符号说明:
符号 | 说明 |
---|---|
f~=F[f]\tilde{f}=F[f]f~=F[f] | fff 的傅里叶变换为 f~\tilde{f}f~ |
f=F−1[f~]f=F^{-1}[\tilde{f}]f=F−1[f~] | f~\tilde{f}f~ 的傅里叶逆变换为 fff |
定理:
f1(x)f_1(x)f1(x) 和 f2(x)f_2(x)f2(x) 乘积的傅里叶变换等于 f1(x)f_1(x)f1(x) 和 f2(x)f_2(x)f2(x) 的傅里叶变换的乘积的卷积乘 12π\frac{1}{2\pi}2π1,即
F[f1⋅f2]=12πF[f1]∗F[f2]F[f_1·f_2]=\frac{1}{2\pi}F[f_1]*F[f_2]F[f1⋅f2]=2π1F[f1]∗F[f2]
证明:
设 F1(ω)=F[f1(t)],F2(ω)=F[f2(t)],IFF_{1}(\omega)=\mathcal{F}\left[f_{1}(t)\right], F_{2}(\omega)=\mathcal{F}\left[f_{2}(t)\right], \quad I \mathcal{F}F1(ω)=F[f1(t)],F2(ω)=F[f2(t)],IF 表示傅里叶逆变换, 则
F−1[F1(ω)∗F2(ω)]=F−1[∫−∞+∞F1(μ)F2(ω−μ)dμ]=12π∫−∞+∞[∫−∞+∞F1(μ)F2(ω−μ)dμ]eiωtdω=12π∫−∞+∞[∫−∞+∞F1(μ)F2(ω−μ)eiμtei(ω−μ)tdω]dμ=12π∫−∞+∞F1(μ)eiμt[∫−∞+∞F2(ω−μ)ei(ω−μ)td(ω−μ)]dμ=f2(t)∫−∞+∞F1(μ)eiμtdμ=2πf1(t)f2(t)
\begin{aligned}
F^{-1}\left[F_{1}(\omega) * F_{2}(\omega)\right]&=F^{-1}\left[\int_{-\infty}^{+\infty} F_{1}(\mu) F_{2}(\omega-\mu) \rm{d} \mu\right]\\
&=\frac{1}{2 \pi} \int_{-\infty}^{+\infty}\left[\int_{-\infty}^{+\infty} F_{1}(\mu) F_{2}(\omega-\mu) d \mu\right] e^{i \omega t} \rm{d} \omega\\
&=\frac{1}{2 \pi} \int_{-\infty}^{+\infty}\left[\int_{-\infty}^{+\infty} F_{1}(\mu) F_{2}(\omega-\mu) e^{i \mu t} e^{i(\omega-\mu) t} d \omega\right] \rm{d} \mu\\
&=\frac{1}{2 \pi} \int_{-\infty}^{+\infty} F_{1}(\mu) e^{i \mu t}\left[\int_{-\infty}^{+\infty} F_{2}(\omega-\mu) e^{i(\omega-\mu) t} d(\omega-\mu)\right] \rm{d} \mu\\
&=f_{2}(t) \int_{-\infty}^{+\infty} F_{1}(\mu) e^{i \mu t} \rm{d} \mu\\
&=2 \pi f_{1}(t) f_{2}(t)
\end{aligned}
F−1[F1(ω)∗F2(ω)]=F−1[∫−∞+∞F1(μ)F2(ω−μ)dμ]=2π1∫−∞+∞[∫−∞+∞F1(μ)F2(ω−μ)dμ]eiωtdω=2π1∫−∞+∞[∫−∞+∞F1(μ)F2(ω−μ)eiμtei(ω−μ)tdω]dμ=2π1∫−∞+∞F1(μ)eiμt[∫−∞+∞F2(ω−μ)ei(ω−μ)td(ω−μ)]dμ=f2(t)∫−∞+∞F1(μ)eiμtdμ=2πf1(t)f2(t)