AtCoder Grand Contest 024E: Sequence Growing Hard 题解

这篇博客详细介绍了AtCoder竞赛中编号为024E的Sequence Growing Hard问题的解题思路。作者指出,该题等价于在序列中插入数字并询问合法插入方案的数量。通过改变问题的初始条件,将问题转化为构建一棵特殊性质的树,其中每个节点都有一个唯一较小的父节点。然后,博主运用树型动态规划(DP)解决此问题,定义dp[i][j]表示有i个节点且根节点值为j的不同树的数量。转移状态涉及枚举子树的节点数,并使用组合数进行计算,确保树的最大节点在最后一个子树中。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

神仙题,感觉思路太神奇
题目等价于每次向序列里面插入一个新数,问有多少种方案
我们考虑怎样插入一个新数是合法的,假设当前插入的数是cur,那么有两种情况
1. cur放在序列的末尾
2. cur之后第一个与cur不一样的数比cur小(或者cur后面的数全都和cur一样)
我们发现改一下这个问题的初始条件,不是空序列,而是一个包含一个0的序列,这两种情况就变成只有第二种情况了,而且括号里的部分也不用考虑
接下来是神奇的部分
所以每个数被插入的时候都能在后面认领到一个唯一的比他小的数,这很像一个树的结构:每个点对应一个唯一的父亲
我们考虑用一个二元组(t,cur)来表示树上的每一个节点,t表示这是第几个被插入的数,cur表示这个插入的数是什么,那么(t,cur)和他的父亲(t’,cur’)之间应该满足t>t’,cur>cur’
所以我们的问题转化成了:按照上述规则建立一棵树,不同构的树有多少棵(这里同构不止要求形态相同,上面的二元组也要相同)
考虑树型dp,dp[i][j]表示有i个点的树,根节点的cur值是j的树有多少棵
转移考虑枚举这棵树的最后一棵子树的点的个数p,显然根据上面的规则它的根节点可以是j+1,j+2…k,又考虑到不能把同构的树重复计算,所以我们可以利用一种类似最小表示法的思想,我们保证这棵树编号最大的点在最后一棵子树上,这样除去原树的根节点和已经确定的编号最大的节点,我们还剩i-2个编号,要再给最后一个子树分配p-1个编号,这里可以用一个组合数
状态转移方程是

dp[i][j]=p=1i1m=j+1kdp[p][m]dp[ip][j]Cp1i2dp[i][j]=∑p=1i−1∑m=j+1kdp[p][m]∗dp[i−p][j]∗Ci−2p−1

这样总复杂度是O(n4)O(n4)的,注意到上面的m的一维可以用前缀和优化,所以复杂度降到O(n3)O(n3)
#include <cstdio>
#include <iostream>
#include <cstring>
#include <string>
#include <cstdlib>
#include <utility>
#include <cctype>
#include <algorithm>
#include <bitset>
#include <set>
#include <map>
#include <vector>
#include <queue>
#include <deque>
#include <stack>
#include <cmath>
#define LL long long
#define LB long double
#define x first
#define y second
#define Pair pair<int,int>
#define pb push_back
#define pf push_front
#define mp make_pair
#define LOWBIT(x) x & (-x)
using namespace std;

const int MOD=1e9+7;
const LL LINF=2e16;
const int INF=1e9;
const int magic=348;
const double eps=1e-10;
const double pi=3.14159265;

inline int getint()
{
    char ch;int res;bool f;
    while (!isdigit(ch=getchar()) && ch!='-') {}
    if (ch=='-') f=false,res=0; else f=true,res=ch-'0';
    while (isdigit(ch=getchar())) res=res*10+ch-'0';
    return f?res:-res;
}

int n,k,m;
LL dp[348][348],sum[348][348],c[348][348];

int main ()
{
    int i,j,p;
    n=getint();k=getint();m=getint();
    c[0][0]=1;
    for (i=1;i<=n;i++)
    {
        c[i][0]=c[i][i]=1;
        for (j=1;j<=i-1;j++) c[i][j]=(c[i-1][j-1]+c[i-1][j])%m;
    }
    for (i=0;i<=k;i++) dp[1][i]=1,sum[1][i]=k-i+1;
    for (i=2;i<=n+1;i++)
        for (j=k;j>=0;j--)
        {
            dp[i][j]=0;
            for (p=1;p<=i-1;p++)
                dp[i][j]=(dp[i][j]+((dp[i-p][j]*sum[p][j+1])%m*c[i-2][p-1])%m)%m;
            sum[i][j]=(sum[i][j+1]+dp[i][j])%m;
        }
    printf("%lld\n",dp[n+1][0]);
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值