这好像是USACO2010的原题
Ans=∑i=1m∑j=1n[gcd(i,j)=1且l2≤i2+j2≤h2]∗2(m−i+1)(n−j+1)Ans=∑i=1m∑j=1n[gcd(i,j)=1且l2≤i2+j2≤h2]∗2(m−i+1)(n−j+1)
令f(k)=∑i=1m∑j=⌈ l2−i2√⌉⌊ h2−i2√⌋[gcd(i,j)=k]∗2(m−i+1)(n−j+1),Ans=f(1)令f(k)=∑i=1m∑j=⌈ l2−i2⌉⌊ h2−i2⌋[gcd(i,j)=k]∗2(m−i+1)(n−j+1),Ans=f(1)
F(k)=∑k|df(d)=∑i=1⌊mk⌋2(m−ik+1)∑j=⌈ l2−(ik)2√k⌉⌊h2−(ik)2√k⌋(n−jk+1)F(k)=∑k|df(d)=∑i=1⌊mk⌋2(m−ik+1)∑j=⌈ l2−(ik)2k⌉⌊h2−(ik)2k⌋(n−jk+1)
令s=⌈ l2−(ik)2−−−−−−−−√k⌉,t=⌊ h2−(ik)2−−−−−−−−√k⌋令s=⌈ l2−(ik)2k⌉,t=⌊ h2−(ik)2k⌋
F(k)=∑i=1⌊mk⌋2(m−ik+1)(n−sk+1)(n−tk+1)(t−s+1)2F(k)=∑i=1⌊mk⌋2(m−ik+1)(n−sk+1)(n−tk+1)(t−s+1)2
*Mobius Inversion
f(k)=∑k|dF(d)μ(dk)f(k)=∑k|dF(d)μ(dk)
f(1)=∑d=1mF(d)μ(d)f(1)=∑d=1mF(d)μ(d)
Complexity: O(m)O(m)
#include <cstdio>
#include <iostream>
#include <cstring>
#include <string>
#include <cstdlib>
#include <utility>
#include <cctype>
#include <algorithm>
#include <bitset>
#include <set>
#include <map>
#include <vector>
#include <queue>
#include <deque>
#include <stack>
#include <cmath>
#define LL long long
#define LB long double
#define x first
#define y second
#define Pair pair<int,int>
#define pb push_back
#define pf push_front
#define mp make_pair
#define LOWBIT(x) x & (-x)
using namespace std;
const int MOD=1e9+7;
const LL LINF=2e16;
const int INF=2e9;
const int magic=348;
const double eps=1e-10;
inline int getint()
{
char ch;int res;bool f;
while (!isdigit(ch=getchar()) && ch!='-') {}
if (ch=='-') f=false,res=0; else f=true,res=ch-'0';
while (isdigit(ch=getchar())) res=res*10+ch-'0';
return f?res:-res;
}
LL m,n,l,h,b;
LL mu[2000048];
bool isprime[200048];int prime[200048],tot=0;
void sieve()
{
int i,j;
mu[1]=1;
memset(isprime,true,sizeof(isprime));
for (i=2;i<=200000;i++)
{
if (isprime[i]) prime[++tot]=i,mu[i]=-1;
for (j=1;j<=tot && (long long)i*prime[j]<=200000;j++)
{
isprime[i*prime[j]]=false;
if (i%prime[j]==0) mu[i*prime[j]]=0; else mu[i*prime[j]]=-mu[i];
if (i%prime[j]==0) break;
}
}
}
int main ()
{
m=getint();n=getint();l=getint();h=getint();b=getint();
sieve();
LL d,i,j,ss,tt;
LL tmp,ans=0;
for (d=1;d<=m;d++)
{
LL cur_ans=0;
for (i=1;i<=m/d;i++)
{
if (h*h-i*i*d*d<=0) continue;
if (l*l-i*i*d*d<=0) ss=1; else ss=ceil(sqrt(l*l-i*i*d*d)/d);
tt=min((long long)(sqrt(h*h-i*i*d*d)/d),n/d);
if (ss>tt) continue;
tmp=(n-d*ss+1+n-d*tt+1);tmp*=(tt-ss+1);tmp%=b;
tmp*=(m-i*d+1);tmp%=b;
cur_ans=(cur_ans+tmp)%b;
}
cur_ans=((cur_ans*mu[d])%b+b)%b;ans=(ans+cur_ans)%b;
}
if (l==1ll)
{
ans=(ans+m*(n+1))%b;
ans=(ans+n*(m+1))%b;
}
ans%=b;
cout<<ans<<endl;
return 0;
}