快速求三阶矩阵的逆矩阵
前言
一般情况下,我们求解伴随矩阵是要注意符号问题和位置问题的(如下所示)
A−1=1[ ][−[ ]−[ ]−[ ] −[ ]]=A−1=1[ ][ M11−[M12] M13−[M21] M22−[M23] M31−[M32] M33]⊤
\begin{aligned}
& A^{-1}=\frac{1}{[\ \ ]}
\left[\begin{array}{cccccc}
& -[\ \ ] & \\
-[\ \ ] & & -[\ \ ]\ \ \\
& -[\ \ ] & \\
\end{array}\right]= \\ \\
& A^{-1}=\frac{1}{[\ \ ]}
\left[\begin{array}{cccccc}
\ \ \ M_{11} & -[M_{12}] & \ \ \ M_{13}\\
-[M_{21}] & \ \ \ M_{22} & -[M_{23}]\ \ \\
\ \ \ M_{31} & -[M_{32}] & \ \ \ M_{33}\\
\end{array}\right]^\top\\
\end{aligned}
A−1=[ ]1⎣⎡−[ ]−[ ]−[ ]−[ ] ⎦⎤=A−1=[ ]1⎣⎡ M11−[M21] M31−[M12] M22−[M32] M13−[M23] M33⎦⎤⊤
我们根据位置安排(行调换)的策略可以避免符号问题,将问题进行化简。
例题一
求矩阵 DDD 的逆矩阵
D=[211121231]
D=\left[\begin{array}{lll}
2 & 1 & 1 \\
1 & 2 & 1 \\
2 & 3 & 1
\end{array}\right]
D=⎣⎡212123111⎦⎤
我们把第一二列抄写到矩阵后面
D1=[211211211223123]
D_1=\left[\begin{array}{lll|ll}
2 & 1 & 1 & 2 & 1 \\
1 & 2 & 1 & 1 & 2 \\
2 & 3 & 1 & 2 & 3
\end{array}\right]
D1=⎣⎡212123111212123⎦⎤
然后把第一二行抄写到矩阵下面(新矩阵 D1D_1D1 的第一二行),
这样我们就得到了一个五阶矩阵:
D2=[2112112112231232112112112]=[2112112112231232112112112]
D_2=\left[\begin{array}{lll|ll}
2 & 1 & 1 & 2 & 1 \\
1 & 2 & 1 & 1 & 2 \\
2 & 3 & 1 & 2 & 3 \\
\hline
2 & 1 & 1 & 2 & 1 \\
1 & 2 & 1 & 1 & 2 \\
\end{array}\right]=
\left[\begin{array}{lllll}
\textcolor{cornflowerblue}{2} &
\textcolor{cornflowerblue}{1} &
\textcolor{cornflowerblue}{1} &
\textcolor{cornflowerblue}{2} &
\textcolor{cornflowerblue}{1} \\
\textcolor{cornflowerblue}{1} & 2 & 1 & 1 & 2 \\
\textcolor{cornflowerblue}{2} & 3 & 1 & 2 & 3 \\
\textcolor{cornflowerblue}{2} & 1 & 1 & 2 & 1 \\
\textcolor{cornflowerblue}{1} & 2 & 1 & 1 & 2 \\
\end{array}\right]
D2=⎣⎢⎢⎢⎢⎡2122112312111112122112312⎦⎥⎥⎥⎥⎤=⎣⎢⎢⎢⎢⎡2122112312111112122112312⎦⎥⎥⎥⎥⎤
然后我们把第一行和第一列删除(新矩阵 D2D_2D2 的第一行和第一列,将标蓝的元素删除)
D3=[2112312311212112]
D_3=\left[\begin{array}{lllll}
2 & 1 & 1 & 2 \\
3 & 1 & 2 & 3 \\
1 & 1 & 2 & 1 \\
2 & 1 & 1 & 2 \\
\end{array}\right]
D3=⎣⎢⎢⎡2312111112212312⎦⎥⎥⎤
然后我们算出矩阵分块组成的九个二阶行列式:
然后我们将求出的九个行列式结果填充到伴随矩阵的框架里,记得加上转置符号
[−1 1−1 2 0−4−1−1 2]⊤=[−1 2−1 1 0−1−1−4 2]
\left[\begin{array}{lllll}
-1 &\ \ \ 1 & -1 \\
\ \ \ 2 &\ \ \ 0 & -4 \\
-1 & -1 &\ \ \ 2 \\
\end{array}\right]^\top=
\left[\begin{array}{lllll}
-1 &\ \ \ 2 & -1 \\
\ \ \ 1 &\ \ \ 0 & -1 \\
-1 & -4 &\ \ \ 2 \\
\end{array}\right]
⎣⎡−1 2−1 1 0−1−1−4 2⎦⎤⊤=⎣⎡−1 1−1 2 0−4−1−1 2⎦⎤
这样我们就得到了伴随矩阵,然后计算矩阵对应的行列式 ∣D∣=−2|D|=-2∣D∣=−2,
最后根据公式 A−1=1∣A∣A∗A^{-1}=\frac{1}{|A|}A^*A−1=∣A∣1A∗,求出逆矩阵 D−1D^{-1}D−1
D−1=1∣D∣D∗= 1−2[−1 2−1 1 0−1−1−4 2]=[ 12−1 12−12 0 12 12 2−1]
D^{-1}=\frac{1}{|D|}D^*=\frac{\ \ \ 1}{-2}
\left[\begin{array}{lllll}
-1 &\ \ \ 2 & -1 \\
\ \ \ 1 &\ \ \ 0 & -1 \\
-1 & -4 &\ \ \ 2 \\
\end{array}\right]=
\left[\begin{array}{lllll}
\ \ \ \frac{1}{2} &-1 & \ \ \ \frac{1}{2} \\
-\frac{1}{2} &\ \ \ 0 & \ \ \ \frac{1}{2} \\
\ \ \ \frac{1}{2} &\ \ \ 2 & -1 \\
\end{array}\right]
D−1=∣D∣1D∗=−2 1⎣⎡−1 1−1 2 0−4−1−1 2⎦⎤=⎣⎡ 21−21 21−1 0 2 21 21−1⎦⎤
例题二
求矩阵 AAA 的逆矩阵
A=[111421931]
A=\left[\begin{array}{lll}
1 & 1 & 1 \\
4 & 2 & 1 \\
9 & 3 & 1
\end{array}\right]
A=⎣⎡149123111⎦⎤
抄写后对应的五阶矩阵为:
A1=[1111142142931931111142142]
A_1=\left[\begin{array}{lll}
1 & 1 & 1 &1 & 1\\
4 & 2 & 1 &4 & 2\\
9 & 3 & 1 &9 & 3\\
1 & 1 & 1 &1 & 1\\
4 & 2 & 1 &4 & 2
\end{array}\right]
A1=⎣⎢⎢⎢⎢⎡1491412312111111491412312⎦⎥⎥⎥⎥⎤
删除后得到的四阶矩阵为:
A2=[2142319311112142]
A_2=\left[\begin{array}{lll}
2 & 1 &4 & 2\\
3 & 1 &9 & 3\\
1 & 1 &1 & 1\\
2 & 1 &4 & 2
\end{array}\right]
A2=⎣⎢⎢⎡2312111149142312⎦⎥⎥⎤
那么对应的伴随矩阵为:
A∗=[−1 5−6 2−8 6−1 3−2]⊤=[−1 2−1 5−8 3−6 6−2]
A^*=\left[\begin{array}{lllll}
-1 &\ \ \ 5 & -6 \\
\ \ \ 2 & -8 & \ \ \ 6 \\
-1 & \ \ \ 3 & -2 \\
\end{array}\right]^\top=
\left[\begin{array}{lllll}
-1 &\ \ \ 2 & -1 \\
\ \ \ 5 & -8 & \ \ \ 3 \\
-6& \ \ \ 6 & -2 \\
\end{array}\right]
A∗=⎣⎡−1 2−1 5−8 3−6 6−2⎦⎤⊤=⎣⎡−1 5−6 2−8 6−1 3−2⎦⎤
矩阵对应的行列式为 ∣A∣=−2|A|=-2∣A∣=−2,根据公式计算得到逆矩阵:
A−1=1∣A∣A∗= 1−2[−1 2−1 5−8 3−6 6−2]=[ 12−1 12−52 4−32 3−3 12]
A^{-1}=\frac{1}{|A|}A^*=\frac{\ \ \ 1}{-2}
\left[\begin{array}{lllll}
-1 &\ \ \ 2 & -1 \\
\ \ \ 5 & -8 & \ \ \ 3 \\
-6& \ \ \ 6 & -2 \\
\end{array}\right]=
\left[\begin{array}{lllll}
\ \ \ \frac{1}{2} &-1 & \ \ \ \frac{1}{2} \\
-\frac{5}{2} &\ \ \ 4 & -\frac{3}{2} \\
\ \ \ 3 & -3 & \ \ \ \frac{1}{2} \\
\end{array}\right]
A−1=∣A∣1A∗=−2 1⎣⎡−1 5−6 2−8 6−1 3−2⎦⎤=⎣⎡ 21−25 3−1 4−3 21−23 21⎦⎤