矩阵A=(a11a12a13a21a22a23a31a32a33)A = \begin{pmatrix} a_{11} & a_{12} & a_{13}\\ a_{21}& a_{22} & a_{23}\\ a_{31}& a_{32} & a_{33} \end{pmatrix}A=⎝⎛a11a21a31a12a22a32a13a23a33⎠⎞
一、行列式计算
∣A∣=a11×a22×a33+a12×a23×a31+a13×a21×a32−a31×a22×a13−a21×a12×a33−a11×a32×a23\left | A \right |=a_{11}\times a_{22}\times a_{33}+a_{12}\times a_{23}\times a_{31}+a_{13}\times a_{21}\times a_{32}-a_{31}\times a_{22}\times a_{13}-a_{21}\times a_{12}\times a_{33}-a_{11}\times a_{32}\times a_{23}∣A∣=