繁星数学随想录·笔记卷
摘录卷
定积分相关公式
01 对称区间的积分公式
∫−aaf(x)dx={0f(x) 为奇函数 2∫0af(x)dxf(x) 为偶函数 \int_{-a}^{a} f(x) d x=\left\{\begin{array}{cc}0 & f(x) \text { 为奇函数 } \\ 2 \int_{0}^{a} f(x) d x & f(x) \text { 为偶函数 }\end{array}\right. ∫−aaf(x)dx={02∫0af(x)dxf(x) 为奇函数 f(x) 为偶函数
02 三角函数形式的积分公式
从几何上考虑
💝💝💝:要记住会默写
✍✍✍:会推导不要背
💝∫0π2f(sinx)dx=∫0π2f(cosx)dx💝∫0πf(sinx)dx=2∫0π2f(sinx)dx💝∫0πxf(sinx)dx=π2∫0πf(sinx)dx💝∫0πxf(sinx)dx=π∫0π2f(sinx)dx💝∫0π2x(f(sinx)+f(cosx))dx=π2∫0π2f(sinx)dx✍∫sinnxdx=−cosxsinn−1xn+n−1n∫sinn−2xdx✍∫cosnxdx=sinxcosn−1xn+n−1n∫cosn−2xdx✍∫tannxdx=tann−1xn−1−∫tann−2xdx✍∫dxasinx+bcosx=1a2+b2ln∣tanx+arctanba2∣+C
\begin{aligned}
& 💝\int_{0}^{\frac{\pi}{2}} f(\sin x) d x=\int_{0}^{\frac{\pi}{2}} f(\cos x) d x\\
& 💝\int_{0}^{\pi} f(\sin x) d x=2 \int_{0}^{\frac{\pi}{2}} f(\sin x) d x\\
& 💝\int_{0}^{\pi} xf(\sin x) d x=\frac{\pi}{2} \int_{0}^{\pi} f(\sin x) d x\\
& 💝\int_{0}^{\pi} x f(\sin x) d x=\pi \int_{0}^{\frac{\pi}{2}} f(\sin x) d x\\
& 💝\int_{0}^{\frac{\pi}{2}} x(f(\sin x)+f(\cos x)) d x=\frac{\pi}{2} \int_{0}^{\frac{\pi}{2}} f(\sin x) d x\\
& ✍\int \sin ^{n} x d x=-\frac{\cos x \sin ^{n-1} x}{n}+\frac{n-1}{n} \int \sin ^{n-2} x d x \\
& ✍\int \cos ^{n} x d x=\frac{\sin x \cos ^{n-1} x}{n}+\frac{n-1}{n} \int \cos ^{n-2} x d x\\
& ✍\int \tan ^{n} x d x=\frac{\tan ^{n-1} x}{n-1}-\int \tan ^{n-2} x d x\\
& ✍\int \frac{d x}{a \sin x+b \cos x}=\frac{1}{\sqrt{a^{2}+b^{2}}} \ln \left|\tan \frac{x+\arctan \frac{b}{a}}{2}\right|+C
\end{aligned}
💝∫02πf(sinx)dx=∫02πf(cosx)dx💝∫0πf(sinx)dx=2∫02πf(sinx)dx💝∫0πxf(sinx)dx=2π∫0πf(sinx)dx💝∫0πxf(sinx)dx=π∫02πf(sinx)dx💝∫02πx(f(sinx)+f(cosx))dx=2π∫02πf(sinx)dx✍∫sinnxdx=−ncosxsinn−1x+nn−1∫sinn−2xdx✍∫cosnxdx=nsinxcosn−1x+nn−1∫cosn−2xdx✍∫tannxdx=n−1tann−1x−∫tann−2xdx✍∫asinx+bcosxdx=a2+b21ln∣∣∣∣∣tan2x+arctanab∣∣∣∣∣+C
03 华理士公式
华理士公式(点火公式)
∫0π2sinnxdx=∫0π2cosnxdx=(n−1)!!n!!H {(n−1)!!n!!n为奇数,点火失败,H取1(n−1)!!n!!⋅π2n为偶数,点火成功,H取π2∫0π2sinnxdx=∫0π2cosnxdx={(n−1)!!n!!n为奇数(n−1)!!n!!⋅π2n为偶数
\begin{aligned}
& \int_{0}^{\frac{\pi}{2}} \sin ^{n} x d x=\int_{0}^{\frac{\pi}{2}} \cos ^{n} x d x=
\frac{(n-1) ! !}{n ! !} H\ \left\{\begin{array}{cc}\frac{(n-1) ! !}{n ! !} & n 为奇数,点火失败,H取1 \\ \frac{(n-1) ! !}{n ! !} \cdot \frac{\pi}{2} & n 为偶数,点火成功,H取\frac{\pi}{2} \end{array}\right.\\
& \int_{0}^{\frac{\pi}{2}} \sin ^{n} x d x=\int_{0}^{\frac{\pi}{2}} \cos ^{n} x d x=\left\{\begin{array}{cc}\frac{(n-1) ! !}{n ! !} & n 为奇数 \\ \frac{(n-1) ! !}{n ! !} \cdot \frac{\pi}{2} & n 为偶数\end{array}\right.
\end{aligned}
∫02πsinnxdx=∫02πcosnxdx=n!!(n−1)!!H {n!!(n−1)!!n!!(n−1)!!⋅2πn为奇数,点火失败,H取1n为偶数,点火成功,H取2π∫02πsinnxdx=∫02πcosnxdx={n!!(n−1)!!n!!(n−1)!!⋅2πn为奇数n为偶数
04 周期函数的积分公式
∫aa+Tf(x)dx=∫0Tf(x)dx=∫−T/2T/2f(x)dx \int_{a}^{a+T} f(x) d x=\int_{0}^{T} f(x) d x=\int_{-T / 2}^{T / 2} f(x) d x ∫aa+Tf(x)dx=∫0Tf(x)dx=∫−T/2T/2f(x)dx
05 柯西不等式-积分形式
(∫abf(x)g(x)dx)2⩽∫abf2(x)dx∫abg2(x)dx \left(\int_{a}^{b} f(x) g(x) \mathrm{d} x\right)^{2} \leqslant \int_{a}^{b} f^{2}(x) \mathrm{d} x \int_{a}^{b} g^{2}(x) \mathrm{d} x (∫abf(x)g(x)dx)2⩽∫abf2(x)dx∫abg2(x)dx