高数强化NO23|积分方程|微分方程应用

积分方程的求解

1. 隐式初始条件:取上限=下限 . 2.   f ( x ) 的可导性 . \begin{aligned} &1. \text{隐式初始条件:取} \text{上限=下限}. \\ &2. \ f(x) \text{的可导性}. \end{aligned} 1.隐式初始条件:取上限=下限.2. f(x)的可导性.
![[Pasted image 20251211145050.png]]

解:  ∫ 0 x t f ( x − t ) d t = u = x − t ∫ x 0 ( x − u ) f ( u ) d ( x − u ) = ∫ 0 x ( x − u ) f ( u ) d u 因 f ( x ) 连续,故 ∫ 0 x f ( t ) d t 与 ∫ 0 x ( x − u ) f ( u ) d u 均可导. 在方程  ∫ 0 x f ( t ) d t + ∫ 0 x ( x − u ) f ( u ) d u = a x 2 ①两边同时对 x 求导: f ( x ) + ∫ 0 x f ( u ) d u = 2 a x ②,令  x = 0 , 可得  f ( 0 ) = 0 f ( x ) = 2 a x − ∫ 0 x f ( u ) d u ,故 f ( x ) 可导. 在②两边同时对 x 求导:  f ′ ( x ) + f ( x ) = 2 a 解得:  f ( x ) = 2 a + C e − x . 由  f ( 0 ) = 0 可得:  C = − 2 a ,  故  f ( x ) = 2 a ( 1 − e − x ) \begin{aligned} &\text{解:} \ \int_0^x t f(x-t)dt \xlongequal{u=x-t} \int_x^0 (x-u)f(u)d(x-u) = \int_0^x (x-u)f(u)du \\ &\text{因} f(x) \text{连续,故} \int_0^x f(t)dt \text{与} \int_0^x (x-u)f(u)du \text{均可导.}\\ &\text{在方程} \ \int_0^x f(t)dt + \int_0^x (x-u)f(u)du = ax^2 \qquad①\text{两边同时对} x \text{求导:} \\ &\quad f(x) + \int_0^x f(u)du = 2ax \quad ② ,\text{令} \ x=0, \text{可得} \ f(0)=0\\&f(x)=2ax - \int_0^x f(u)du,\text{故} f(x) \text{可导.} \\ &\text{在} ② \text{两边同时对} x \text{求导:} \ f'(x) + f(x) = 2a \\ &\text{解得:} \ f(x) = 2a + C e^{-x}. \text{由} \ f(0)=0 \text{可得:} \ C=-2a, \ \text{故} \ f(x)=2a(1-e^{-x}) \end{aligned} 解: 0xtf(xt)dtu=xt x0(xu)f(u)d(xu)=0x(xu)f(u)duf(x)连续,故0xf(t)dt0x(xu)f(u)du均可导.在方程 0xf(t)dt+0x(xu)f(u)du=ax2两边同时对x求导:f(x)+0xf(u)du=2ax x=0,可得 f(0)=0f(x)=2ax0xf(u)duf(x)可导.两边同时对x求导: f(x)+f(x)=2a解得: f(x)=2a+Cex. f(0)=0可得: C=2a,  f(x)=2a(1ex)
( 2 )   ∫ 0 1 f ( x ) d x 1 − 0 = 1 , ∫ 0 1 2 a ( 1 − e − x ) d x = 2 a + 2 a e − x ∣ 0 1 = 2 a + 2 a ( e − 1 − 1 ) = 2 a e − 1 = 1    ⟹    a = e 2 \begin{aligned} &(2) \ \frac{\int_0^1 f(x)dx}{1-0} = 1, \\ &\int_0^1 2a(1-e^{-x})dx = 2a + 2a e^{-x}\bigg|_0^1 \\ &= 2a + 2a(e^{-1}-1) = 2a e^{-1} = 1 \\ &\implies a = \frac{e}{2} \end{aligned} (2) 1001f(x)dx=1,012a(1ex)dx=2a+2aex 01=2a+2a(e11)=2ae1=1a=2e
【小结】求解积分方程的基本思路就是求导转化为微分方程,但是有三点需要注意一下: 1. 求导之前需要结合已知条件证明可导性; 2. 积分方程一般都是间接给出初始条件,在原方程中将  x  取某些特殊值即可得到初始条 件(一般取使积分上、下限相等的点); 3. 如果变限积分没有单独作为一项出现,即积分前有函数,首先需要将函数消掉,从而 通过一次求导使方程中不再含有变限积分。 \begin{aligned} &\text{【小结】求解积分方程的基本思路就是求导转化为微分方程,但是有三点需要注意一下:} \\ \\ &1. \text{求导之前需要结合已知条件证明可导性;} \\ \\ &2. \text{积分方程一般都是间接给出初始条件,在原方程中将} \ x \ \text{取某些特殊值即可得到初始条} \\ &\quad \text{件(一般取使积分上、下限相等的点);} \\ \\ &3. \text{如果变限积分没有单独作为一项出现,即积分前有函数,首先需要将函数消掉,从而} \\ &\quad \text{通过一次求导使方程中不再含有变限积分。} \end{aligned} 【小结】求解积分方程的基本思路就是求导转化为微分方程,但是有三点需要注意一下:1.求导之前需要结合已知条件证明可导性;2.积分方程一般都是间接给出初始条件,在原方程中将 x 取某些特殊值即可得到初始条件(一般取使积分上、下限相等的点);3.如果变限积分没有单独作为一项出现,即积分前有函数,首先需要将函数消掉,从而通过一次求导使方程中不再含有变限积分。
![[Pasted image 20251211145421.png]]

解: ∫ 0 t d x ∫ 0 t − x f ′ ( x + y ) d y = f ( t ) − 1 2 t ⋅ t 对 ∫ 0 t d x ∫ 0 t − x f ′ ( x + y ) d ( x + y )   ( 积分变量是 y , x 是常数 ) = ∫ 0 t f ( x + y ) ∣ y = 0 y = t − x d x = ∫ 0 t ( f ( t ) − f ( x ) ) d x = t f ( t ) − ∫ 0 t f ( x ) d x 在  t f ( t ) − ∫ 0 t f ( x ) d x = 1 2 t 2 f ( t ) 两边同时对 t 求导: f ( t ) + t f ′ ( t ) − f ( t ) = t f ( t ) + 1 2 t 2 f ′ ( t ) , ( 1 − t 2 ) f ′ ( t ) = f ( t ) , d f ( t ) f ( t ) = d t 1 − t 2 ln ⁡ f ( t ) = − 2 ln ⁡ ∣ 2 − t ∣ + C = ln ⁡ C ( 2 − t ) 2 ,   f ( t ) = C ( 2 − t ) 2 , 由 f ( 0 ) = 1    ⟹    C = 4 , 故 f ( x ) = 4 ( 2 − x ) 2 ,   0 ≤ x ≤ 1 \begin{aligned} &\text{解:} \int_0^t dx \int_0^{t-x} f'(x+y)dy = f(t) - \frac{1}{2}t \cdot t \\ \\ &\text{对} \int_0^t dx \int_0^{t-x} f'(x+y)d(x+y) \ (\text{积分变量是} y, x \text{是常数}) \\ &= \int_0^t \left. f(x+y) \right|_{y=0}^{y=t-x} dx = \int_0^t \left( f(t) - f(x) \right)dx = t f(t) - \int_0^t f(x)dx \\ \\ &\text{在} \ t f(t) - \int_0^t f(x)dx = \frac{1}{2}t^2 f(t) \text{两边同时对} t \text{求导:} \\ &f(t) + t f'(t) - f(t) = t f(t) + \frac{1}{2}t^2 f'(t), \quad \left( 1 - \frac{t}{2} \right) f'(t) = f(t), \\ &\frac{df(t)}{f(t)} = \frac{dt}{1 - \frac{t}{2}} \\ \\ &\ln f(t) = -2\ln|2 - t| + C = \ln \frac{C}{(2 - t)^2}, \ f(t) = \frac{C}{(2 - t)^2}, \\ &\text{由} f(0) = 1 \implies C = 4, \text{故} f(x) = \frac{4}{(2 - x)^2}, \ 0 \leq x \leq 1 \end{aligned} 解:0tdx0txf(x+y)dy=f(t)21tt0tdx0txf(x+y)d(x+y) (积分变量是y,x是常数)=0tf(x+y)y=0y=txdx=0t(f(t)f(x))dx=tf(t)0tf(x)dx tf(t)0tf(x)dx=21t2f(t)两边同时对t求导:f(t)+tf(t)f(t)=tf(t)+21t2f(t),(12t)f(t)=f(t),f(t)df(t)=12tdtlnf(t)=2ln∣2t+C=ln(2t)2C, f(t)=(2t)2C,f(0)=1C=4,f(x)=(2x)24, 0x1
【小结】条件中若给出的是二重积分的形式的方程,可以转化为定积分的形式得到积分方程。 \text{【小结】条件中若给出的是二重积分的形式的方程,可以转化为定积分的形式得到积分方程。} 【小结】条件中若给出的是二重积分的形式的方程,可以转化为定积分的形式得到积分方程。

微分方程的应用

利用微分学的知识列方程

![[Pasted image 20251211145630.png]]

解:  y ′ = ( u ( x ) cos ⁡ x ) ′ = u ′ sec ⁡ x + u sec ⁡ x tan ⁡ x , y ′ ′ = u ′ ′ sec ⁡ x + u ′ sec ⁡ x tan ⁡ x + u ′ sec ⁡ x tan ⁡ x + u sec ⁡ x tan ⁡ 2 x + u sec ⁡ x sec ⁡ 2 x y ′ ′ cos ⁡ x − 2 y ′ sin ⁡ x + 3 y cos ⁡ x = u ′ ′ + 2 u ′ tan ⁡ x + u tan ⁡ 2 x + u sec ⁡ 2 x − 2 u ′ tan ⁡ x − 2 u tan ⁡ 2 x + 3 u = u ′ ′ + 4 u , 原方程化为  u ′ ′ + 4 u = e x . \begin{aligned} &\text{解:} \ y' = \left( \frac{u(x)}{\cos x} \right)' = u'\sec x + u \sec x \tan x, \\ \\ &y'' = u''\sec x + u'\sec x \tan x + u'\sec x \tan x + u \sec x \tan^2 x + u \sec x \sec^2 x \\ \\ &y''\cos x - 2y'\sin x + 3y\cos x \\ &= u'' + 2u'\tan x + u\tan^2 x + u\sec^2 x - 2u'\tan x - 2u\tan^2 x + 3u \\ &= u'' + 4u, \\ \\ &\text{原方程化为} \ u'' + 4u = e^x. \end{aligned} 解: y=(cosxu(x))=usecx+usecxtanx,y′′=u′′secx+usecxtanx+usecxtanx+usecxtan2x+usecxsec2xy′′cosx2ysinx+3ycosx=u′′+2utanx+utan2x+usec2x2utanx2utan2x+3u=u′′+4u,原方程化为 u′′+4u=ex.
求解特征方程:  λ 2 + 4 = 0 移项得:  λ 2 = − 4 根据复数运算规则,  − 1 = i ,因此: λ = ± − 4 = ± 2 i 即特征根为一对共轭复根:  λ 1 = 2 i ,   λ 2 = − 2 i \begin{aligned} &\text{求解特征方程:} \ \lambda^2 + 4 = 0 \\ &\text{移项得:} \ \lambda^2 = -4 \\ &\text{根据复数运算规则,} \ \sqrt{-1} = i,\text{因此:} \\ &\lambda = \pm \sqrt{-4} = \pm 2i \\ &\text{即特征根为一对共轭复根:} \ \lambda_1 = 2i, \ \lambda_2 = -2i \end{aligned} 求解特征方程: λ2+4=0移项得: λ2=4根据复数运算规则, 1 =i因此:λ=±4 =±2i即特征根为一对共轭复根: λ1=2i, λ2=2i
对于非齐次方程  u ′ ′ + 4 u = e x ,由于右端项是 e x   ( 属于 e λ x 型,其中 λ = 1 ) , 且 λ = 1 不是特征方程 λ 2 + 4 = 0 的根,因此设特解形式为: u ∗ = A e x   ( 其中 A 为待定系数 ) 求导得:  ( u ∗ ) ′ = A e x ,   ( u ∗ ) ′ ′ = A e x 将 u ∗ , ( u ∗ ) ′ ′ 代入原非齐次方程: A e x + 4 ⋅ A e x = e x 合并同类项:  5 A e x = e x 比较系数得:  5 A = 1    ⟹    A = 1 5 因此特解为  u ∗ = 1 5 e x . \begin{aligned} &\text{对于非齐次方程} \ u'' + 4u = e^x,\text{由于右端项是} e^x \ (\text{属于} e^{\lambda x} \text{型,其中} \lambda=1),\\ &\text{且} \lambda=1 \text{不是特征方程} \lambda^2+4=0 \text{的根,因此设特解形式为:} \\ &u^* = A e^x \ (\text{其中} A \text{为待定系数}) \\ \\ &\text{求导得:} \ (u^*)' = A e^x, \ (u^*)'' = A e^x \\ &\text{将} u^*, (u^*)'' \text{代入原非齐次方程:} \\ &A e^x + 4 \cdot A e^x = e^x \\ &\text{合并同类项:} \ 5A e^x = e^x \\ &\text{比较系数得:} \ 5A = 1 \implies A = \frac{1}{5} \\ \\ &\text{因此特解为} \ u^* = \frac{1}{5}e^x. \end{aligned} 对于非齐次方程 u′′+4u=ex由于右端项是ex (属于eλx型,其中λ=1)λ=1不是特征方程λ2+4=0的根,因此设特解形式为:u=Aex (其中A为待定系数)求导得: (u)=Aex, (u)′′=Aexu,(u)′′代入原非齐次方程:Aex+4Aex=ex合并同类项: 5Aex=ex比较系数得: 5A=1A=51因此特解为 u=51ex.
u ( x ) = C 1 cos ⁡ 2 x + C 2 sin ⁡ 2 x + 1 5 e x u(x) = C_1 \cos 2x + C_2 \sin 2x + \frac{1}{5}e^x u(x)=C1cos2x+C2sin2x+51ex
y = C 1 cos ⁡ 2 x cos ⁡ x + C 2 sin ⁡ x + e x 5 cos ⁡ x y = \frac{C_1 \cos 2x}{\cos x} + C_2 \sin x + \frac{e^x}{5\cos x} y=cosxC1cos2x+C2sinx+5cosxex
法2: u = y cos ⁡ x = y ( x ) cos ⁡ x , u ′ = y ′ cos ⁡ x − y sin ⁡ x , u ′ ′ = y ′ ′ cos ⁡ x − 2 y ′ sin ⁡ x − y cos ⁡ x , 原方程化简为  u ′ ′ + 4 u = e x \begin{aligned} &\text{法2:} \\ &u = y \cos x = y(x) \cos x, \\ &u' = y' \cos x - y \sin x, \\ &u'' = y'' \cos x - 2y' \sin x - y \cos x, \\ &\text{原方程化简为} \ u'' + 4u = e^x \end{aligned} 2u=ycosx=y(x)cosx,u=ycosxysinx,u′′=y′′cosx2ysinxycosx,原方程化简为 u′′+4u=ex
![[Pasted image 20251211145641.png]]

解: ∂ z ∂ x = f ′ ( e x cos ⁡ y ) ⋅ e x cos ⁡ y , ∂ z ∂ y = f ′ ( e x cos ⁡ y ) ⋅ e x ( − sin ⁡ y ) ∂ 2 z ∂ x 2 = cos ⁡ y ( e x f ′ ( e x cos ⁡ y ) + e x f ′ ′ ( e x cos ⁡ y ) ⋅ e x cos ⁡ y ) ∂ 2 z ∂ y 2 = e x [ − cos ⁡ y f ′ ( e x cos ⁡ y ) − sin ⁡ y f ′ ′ ( e x cos ⁡ y ) ⋅ e x ( − sin ⁡ y ) ] ∂ 2 z ∂ x 2 + ∂ 2 z ∂ y 2 = e 2 x f ′ ′ ( e x cos ⁡ y ) = ( 4 z + e x cos ⁡ y ) e 2 x , 故  f ′ ′ ( u ) − u = 4 f ( u ) f ′ ′ ( u ) − 4 f ( u ) = u \begin{aligned} &\text{解:} \\ &\frac{\partial z}{\partial x} = f'\left(e^x \cos y\right) \cdot e^x \cos y, \quad \frac{\partial z}{\partial y} = f'\left(e^x \cos y\right) \cdot e^x (-\sin y) \\ \\ &\frac{\partial^2 z}{\partial x^2} = \cos y \left( e^x f'\left(e^x \cos y\right) + e^x f''\left(e^x \cos y\right) \cdot e^x \cos y \right) \\ \\ &\frac{\partial^2 z}{\partial y^2} = e^x \left[ -\cos y f'\left(e^x \cos y\right) - \sin y f''\left(e^x \cos y\right) \cdot e^x (-\sin y) \right] \\ \\ &\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial y^2} = e^{2x} f''\left(e^x \cos y\right) = (4z + e^x \cos y) e^{2x}, \\ &\text{故} \ f''(u) - u = 4f(u) \\ \\ &f''(u) - 4f(u) = u \end{aligned} 解:xz=f(excosy)excosy,yz=f(excosy)ex(siny)x22z=cosy(exf(excosy)+exf′′(excosy)excosy)y22z=ex[cosyf(excosy)sinyf′′(excosy)ex(siny)]x22z+y22z=e2xf′′(excosy)=(4z+excosy)e2x, f′′(u)u=4f(u)f′′(u)4f(u)=u
齐次方程的通解为  C 1 e 2 u + C 2 e − 2 u .  设非齐次特解为  a u + b , 代入得  a = − 1 4 ,   b = 0.  故 f ( u ) = C 1 e 2 u + C 2 e − 2 u − 1 4 u , 由  f ( 0 ) = 0 ,   f ′ ( 0 ) = 0 ,  得  C 1 = 1 16 ,   C 2 = − 1 16 , 因此  f ( u ) = 1 16 e 2 u − 1 16 e − 2 u − 1 4 u \begin{aligned} &\text{齐次方程的通解为} \ C_1 e^{2u} + C_2 e^{-2u}. \ \text{设非齐次特解为} \ au + b, \\ &\text{代入得} \ a = -\frac{1}{4}, \ b = 0. \ \text{故} \\ &f(u) = C_1 e^{2u} + C_2 e^{-2u} - \frac{1}{4}u, \\ &\text{由} \ f(0)=0, \ f'(0)=0, \ \text{得} \ C_1 = \frac{1}{16}, \ C_2 = -\frac{1}{16}, \\ &\text{因此} \ f(u) = \frac{1}{16}e^{2u} - \frac{1}{16}e^{-2u} - \frac{1}{4}u \end{aligned} 齐次方程的通解为 C1e2u+C2e2u. 设非齐次特解为 au+b,代入得 a=41, b=0. f(u)=C1e2u+C2e2u41u, f(0)=0, f(0)=0,  C1=161, C2=161,因此 f(u)=161e2u161e2u41u

步骤1:设定特解形式 非齐次方程为  f ′ ′ ( u ) − 4 f ( u ) = u ,右端是一次多项式 u , 且 0 不是齐次方程特征根(特征方程 λ 2 − 4 = 0 的根为 λ = ± 2 ), 因此设特解为一次多项式: f ∗ ( u ) = a u + b   ( a , b 为待定系数 ) . 步骤2:求特解的各阶导数 ( f ∗ ) ′ = d d u ( a u + b ) = a , ( f ∗ ) ′ ′ = d d u ( a ) = 0. 步骤3:代入原非齐次方程 将 ( f ∗ ) ′ ′ = 0 、 f ∗ ( u ) = a u + b 代入 f ′ ′ ( u ) − 4 f ( u ) = u : 0 − 4 ( a u + b ) = u , 展开整理: − 4 a u − 4 b = u . 步骤4:对比系数求解 等式两边同类项系数需相等: { 一次项系数: − 4 a = 1 常数项: − 4 b = 0 解得: a = − 1 4 ,   b = 0. 因此特解为: f ∗ ( u ) = − 1 4 u . \begin{aligned} &\text{步骤1:设定特解形式} \\ &\text{非齐次方程为} \ f''(u) - 4f(u) = u,\text{右端是一次多项式} u,\\ &\text{且} 0 \text{不是齐次方程特征根(特征方程} \lambda^2 - 4 = 0 \text{的根为} \lambda=\pm2),\\ &\text{因此设特解为一次多项式:} f^*(u) = au + b \ (a,b \text{为待定系数}). \\ \\ &\text{步骤2:求特解的各阶导数} \\ &(f^*)' = \frac{d}{du}(au + b) = a, \\ &(f^*)'' = \frac{d}{du}(a) = 0. \\ \\ &\text{步骤3:代入原非齐次方程} \\ &\text{将} (f^*)'' = 0、f^*(u) = au + b \text{代入} f''(u) - 4f(u) = u:\\ &0 - 4(au + b) = u, \\ &\text{展开整理:} -4au - 4b = u. \\ \\ &\text{步骤4:对比系数求解} \\ &\text{等式两边同类项系数需相等:} \\ &\begin{cases} \text{一次项系数:} -4a = 1 \\ \text{常数项:} -4b = 0 \end{cases} \\ &\text{解得:} a = -\frac{1}{4}, \ b = 0. \\ \\ &\text{因此特解为:} f^*(u) = -\frac{1}{4}u. \end{aligned} 步骤1:设定特解形式非齐次方程为 f′′(u)4f(u)=u右端是一次多项式u0不是齐次方程特征根(特征方程λ24=0的根为λ=±2),因此设特解为一次多项式:f(u)=au+b (a,b为待定系数).步骤2:求特解的各阶导数(f)=dud(au+b)=a,(f)′′=dud(a)=0.步骤3:代入原非齐次方程(f)′′=0f(u)=au+b代入f′′(u)4f(u)=u04(au+b)=u,展开整理:4au4b=u.步骤4:对比系数求解等式两边同类项系数需相等:{一次项系数:4a=1常数项:4b=0解得:a=41, b=0.因此特解为:f(u)=41u.
![[Pasted image 20251211145654.png]]

解: L 在点 ( x , y ) 的切线的斜率为  d y d x = y ′ ( t ) x ′ ( t ) = − sin ⁡ t f ′ ( t ) . 过该点的切线方程为  Y − y = − sin ⁡ t f ′ ( t ) ( X − x ) . 切线与 x 轴交点为  y f ′ ( t ) sin ⁡ t + x = cos ⁡ t sin ⁡ t f ′ ( t ) + f ( t ) = f ′ ( t ) cot ⁡ t + f ( t ) . 到切点的距离为  ( f ′ ( t ) cot ⁡ t + f ( t ) − f ( t ) ) 2 + ( cos ⁡ t − 0 ) 2 = 1 , 即  ( f ′ ( t ) cot ⁡ t ) 2 + cos ⁡ 2 t = 1 , ( f ′ ( t ) ) 2 = sin ⁡ 2 t ⋅ tan ⁡ 2 t ,  故  f ′ ( t ) = sin ⁡ 2 t cos ⁡ t . \begin{aligned} &\text{解:} L \text{在点} (x,y) \text{的切线的斜率为} \ \frac{dy}{dx} = \frac{y'(t)}{x'(t)} = \frac{-\sin t}{f'(t)}. \\ \\ &\text{过该点的切线方程为} \ Y - y = -\frac{\sin t}{f'(t)}(X - x). \\ \\ &\text{切线与} x \text{轴交点为} \ \frac{y f'(t)}{\sin t} + x = \frac{\cos t}{\sin t} f'(t) + f(t) = f'(t)\cot t + f(t). \\ \\ &\text{到切点的距离为} \ \sqrt{\left( f'(t)\cot t + f(t) - f(t) \right)^2 + \left( \cos t - 0 \right)^2} = 1, \\ &\text{即} \ \left( f'(t)\cot t \right)^2 + \cos^2 t = 1, \\ &\left( f'(t) \right)^2 = \sin^2 t \cdot \tan^2 t, \ \text{故} \ f'(t) = \frac{\sin^2 t}{\cos t}. \end{aligned} 解:L在点(x,y)的切线的斜率为 dxdy=x(t)y(t)=f(t)sint.过该点的切线方程为 Yy=f(t)sint(Xx).切线与x轴交点为 sintyf(t)+x=sintcostf(t)+f(t)=f(t)cott+f(t).到切点的距离为 (f(t)cott+f(t)f(t))2+(cost0)2 =1, (f(t)cott)2+cos2t=1,(f(t))2=sin2ttan2t,  f(t)=costsin2t.
f ( t ) = ∫ sin ⁡ 2 t cos ⁡ t d t = ∫ 1 − cos ⁡ 2 t cos ⁡ t d t = ∫ ( sec ⁡ t − cos ⁡ t ) d t = ln ⁡ ∣ sec ⁡ t + tan ⁡ t ∣ − sin ⁡ t + C , 由  f ( 0 ) = 0    ⟹    C = 0 , 故  f ( t ) = ln ⁡ ∣ sec ⁡ t + tan ⁡ t ∣ − sin ⁡ t \begin{aligned} f(t) &= \int \frac{\sin^2 t}{\cos t} dt = \int \frac{1 - \cos^2 t}{\cos t} dt = \int (\sec t - \cos t) dt \\ &= \ln|\sec t + \tan t| - \sin t + C, \\ &\text{由} \ f(0) = 0 \implies C = 0, \\ \text{故} \ f(t) &= \ln|\sec t + \tan t| - \sin t \end{aligned} f(t) f(t)=costsin2tdt=cost1cos2tdt=(sectcost)dt=lnsect+tantsint+C, f(0)=0C=0,=lnsect+tantsint
S = ∫ a b y ( x ) d x = ∫ 0 π 2 cos ⁡ t   d ( f ( t ) ) = ∫ 0 π 2 cos ⁡ t ⋅ sin ⁡ 2 t cos ⁡ t d t = ∫ 0 π 2 sin ⁡ 2 t d t = π 4 \begin{aligned} S &= \int_a^b y(x)dx = \int_0^{\frac{\pi}{2}} \cos t \, d(f(t)) = \int_0^{\frac{\pi}{2}} \cos t \cdot \frac{\sin^2 t}{\cos t} dt \\ &= \int_0^{\frac{\pi}{2}} \sin^2 t dt = \frac{\pi}{4} \end{aligned} S=aby(x)dx=02πcostd(f(t))=02πcostcostsin2tdt=02πsin2tdt=4π

利用积分学的知识列方程

![[Pasted image 20251211145713.png]]

解:设点 ( x , y ) 处的切线方程为 Y − y = y ′ ( X − x ) ,  与 x 轴交点为 x − y y ′ . S 1 = 1 2 ( x − ( x − y y ′ ) ) ⋅ y = y 2 2 y ′ , S 2 = ∫ 0 x y ( u ) d u , 2 S 1 − S 2 = y 2 y ′ − ∫ 0 x y ( u ) d u = 1 ① 两边求导:  2 y ⋅ y ′ ⋅ y ′ − y 2 ⋅ y ′ ′ ( y ′ ) 2 − y = 0 ,  即 ( y ′ ) 2 = y y ′ ′ . 令 p = y ′ ,   y ′ ′ = p d p d y ,  代入得  p 2 − y ⋅ p d p d y = 0    ⟹    d p p = d y y , 解得  p = C 1 y    ⟹    y ′ = C 1 y . 分离变量:  d y y = C 1 d x    ⟹    ln ⁡ y = C 1 x + C 2    ⟹    y = C 2 e C 1 x . 由 y ( 0 ) = 1    ⟹    C 2 = 1 ;  代入①令 x = 0 , 得 y ′ ( 0 ) = 1    ⟹    C 1 = 1 , 故  y = e x . \begin{aligned} &\text{解:设点} (x,y) \text{处的切线方程为} \\ &Y - y = y'(X - x), \ \text{与} x \text{轴交点为} x - \frac{y}{y'}. \\ \\ &S_1 = \frac{1}{2}\left( x - \left( x - \frac{y}{y'} \right) \right) \cdot y = \frac{y^2}{2y'}, \quad S_2 = \int_0^x y(u)du, \\ \\ &2S_1 - S_2 = \frac{y^2}{y'} - \int_0^x y(u)du = 1 \quad ① \\ \\ &\text{两边求导:} \ \frac{2y \cdot y' \cdot y' - y^2 \cdot y''}{(y')^2} - y = 0, \ \text{即} (y')^2 = y y''. \\ \\ &\text{令} p = y', \ y'' = p \frac{dp}{dy}, \ \text{代入得} \ p^2 - y \cdot p \frac{dp}{dy} = 0 \implies \frac{dp}{p} = \frac{dy}{y}, \\ &\text{解得} \ p = C_1 y \implies y' = C_1 y. \\ \\ &\text{分离变量:} \ \frac{dy}{y} = C_1 dx \implies \ln y = C_1 x + C_2 \implies y = C_2 e^{C_1 x}. \\ \\ &\text{由} y(0)=1 \implies C_2=1; \ \text{代入} ① \text{令} x=0, \text{得} y'(0)=1 \implies C_1=1, \\ &\text{故} \ y = e^x. \end{aligned} 解:设点(x,y)处的切线方程为Yy=y(Xx), x轴交点为xyy.S1=21(x(xyy))y=2yy2,S2=0xy(u)du,2S1S2=yy20xy(u)du=1两边求导: (y)22yyyy2y′′y=0, (y)2=yy′′.p=y, y′′=pdydp, 代入得 p2ypdydp=0pdp=ydy,解得 p=C1yy=C1y.分离变量: ydy=C1dxlny=C1x+C2y=C2eC1x.y(0)=1C2=1; 代入x=0,y(0)=1C1=1, y=ex.
法2:  ( y ′ ) 2 − y y ′ ′ y ′ = ( y y ′ ) ′ = 0 , 故  y y ′ = C .  后面同上 . \begin{aligned} &\text{法2:} \ \frac{(y')^2 - y y''}{y'} = \left( \frac{y}{y'} \right)' = 0, \\ &\text{故} \ \frac{y}{y'} = C. \ \text{后面同上}. \end{aligned} 2 y(y)2yy′′=(yy)=0, yy=C. 后面同上.
![[Pasted image 20251211145731.png]]

![[Pasted image 20251211145753.png]]

解:① t 时刻液面高度是 y . π x 2 = π φ 2 ( y ) = π ⋅ 2 2 + π t t = x 2 − 4 = φ 2 ( y ) − 4 \begin{aligned} &\text{解:①} t \text{时刻液面高度是} y. \\ &\pi x^2 = \pi \varphi^2(y) \\ &= \pi \cdot 2^2 + \pi t \\ &t = x^2 - 4 = \varphi^2(y) - 4 \end{aligned} 解:t时刻液面高度是y.πx2=πφ2(y)=π22+πtt=x24=φ2(y)4
②  V = ∫ 0 y π x 2 ( u ) d u = ∫ 0 y π φ 2 ( u ) d u = 3 t = 3 ( φ 2 ( y ) − 4 ) 两边同时对 y 求导: π φ 2 ( y ) = 6 φ ( y ) φ ′ ( y ) π φ ( y ) = 6 φ ′ ( y ) d φ ( y ) φ ( y ) = π 6 d y ln ⁡ φ ( y ) = π 6 y + C φ ( y ) = C e π 6 y ,  由 φ ( 0 ) = 2 , C = 2 φ ( y ) = 2 e π 6 y \begin{aligned} &\text{②} \ V = \int_0^y \pi x^2(u)du = \int_0^y \pi \varphi^2(u)du = 3t \\ &= 3\left( \varphi^2(y) - 4 \right) \\ \\ &\text{两边同时对} y \text{求导:} \\ &\pi \varphi^2(y) = 6 \varphi(y) \varphi'(y) \\ &\pi \varphi(y) = 6 \varphi'(y) \\ \\ &\frac{d\varphi(y)}{\varphi(y)} = \frac{\pi}{6} dy \\ &\ln \varphi(y) = \frac{\pi}{6} y + C \\ &\varphi(y) = C e^{\frac{\pi}{6} y}, \ \text{由} \varphi(0)=2,C=2\\& \varphi(y) = 2 e^{\frac{\pi}{6} y}\end{aligned}  V=0yπx2(u)du=0yπφ2(u)du=3t=3(φ2(y)4)两边同时对y求导:πφ2(y)=6φ(y)φ(y)πφ(y)=6φ(y)φ(y)dφ(y)=6πdylnφ(y)=6πy+Cφ(y)=Ce6πy, φ(0)=2C=2φ(y)=2e6πy

利用物理规律列方程

![[Pasted image 20251211145813.png]]

解:由题可得: F = v ,  又  v ′ = d v d t = − a = − F m = − F = − v d v d t = − v    ⟹    − d v v = d t 积分得: ln ⁡ v = − t + C    ⟹    v = C e − t , 由  t = 0 ,   v = v 0    ⟹    C = v 0 , 故  v = v 0 e − t . 当  v = v 0 3 时, v 0 3 = v 0 e − t    ⟹    t = ln ⁡ 3. s = ∫ 0 ln ⁡ 3 v 0 e − t d t = v 0 ( − e − t ) ∣ 0 ln ⁡ 3 = 2 3 v 0 \begin{aligned} &\text{解:由题可得:} F = v, \ \text{又} \ v' = \frac{dv}{dt} = -a = -\frac{F}{m} = -F = -v \\ \\ &\frac{dv}{dt} = -v \implies -\frac{dv}{v} = dt \\ &\text{积分得:} \ln v = -t + C \implies v = Ce^{-t}, \\ &\text{由} \ t=0, \ v=v_0 \implies C = v_0, \\ &\text{故} \ v = v_0 e^{-t}. \\ \\ &\text{当} \ v = \frac{v_0}{3} \text{时,} \frac{v_0}{3} = v_0 e^{-t} \implies t = \ln 3. \\ \\ &s = \int_0^{\ln 3} v_0 e^{-t} dt = v_0 \left. (-e^{-t}) \right|_0^{\ln 3} = \frac{2}{3}v_0 \end{aligned} 解:由题可得:F=v,  v=dtdv=a=mF=F=vdtdv=vvdv=dt积分得:lnv=t+Cv=Cet, t=0, v=v0C=v0, v=v0et. v=3v0时,3v0=v0ett=ln3.s=0ln3v0etdt=v0(et) 0ln3=32v0
【小结】运用物理规律列方程除了会用到牛顿第二定律外,还会用到导数的物理意义, 即位移的导数是速度,速度的导数是加速度。 \begin{aligned}&【小结】运用物理规律列方程除了会用到牛顿第二定律外,还会用到导数的物理意义, \\&即位移的导数是速度,速度的导数是加速度。\end{aligned} 【小结】运用物理规律列方程除了会用到牛顿第二定律外,还会用到导数的物理意义,即位移的导数是速度,速度的导数是加速度。
![[Pasted image 20251211145938.png]]

解:设 t 时刻物体的温度为 T ( t ) ,由题得: T ′ ( t ) = k ( T ( t ) − 20 ) 分离变量:  d T T − 20 = k d t 积分得:  T = C e k t + 20 由 T ( 0 ) = 120 ,得 C = 100 ;由 T ( 30 ) = 30 ,得 k = − 1 30 ln ⁡ 10. 当 T = 21 时, 21 = 100 e − 1 30 ln ⁡ 10 ⋅ t + 20 解得 t = 60 ,还需要冷却30分钟 \begin{aligned} &\text{解:设} t \text{时刻物体的温度为} T(t),\text{由题得:} \\ &T'(t) = k\left( T(t) - 20 \right) \\ &\text{分离变量:} \ \frac{dT}{T - 20} = k dt \\ &\text{积分得:} \ T = Ce^{kt} + 20 \\ \\ &\text{由} T(0)=120,\text{得} C=100;\text{由} T(30)=30,\text{得} k = -\frac{1}{30}\ln 10. \\ \\ &\text{当} T=21 \text{时,} 21 = 100e^{-\frac{1}{30}\ln 10 \cdot t} + 20 \\ &\text{解得} t=60,\text{还需要冷却30分钟} \end{aligned} 解:设t时刻物体的温度为T(t)由题得:T(t)=k(T(t)20)分离变量: T20dT=kdt积分得: T=Cekt+20T(0)=120C=100T(30)=30k=301ln10.T=21时,21=100e301ln10t+20解得t=60还需要冷却30分钟

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值