积分方程的求解
1.
隐式初始条件:取上限=下限
.
2.
f
(
x
)
的可导性
.
\begin{aligned} &1. \text{隐式初始条件:取} \text{上限=下限}. \\ &2. \ f(x) \text{的可导性}. \end{aligned}
1.隐式初始条件:取上限=下限.2. f(x)的可导性.
![![[Pasted image 20251211145050.png]]](https://i-blog.csdnimg.cn/direct/ef94be8e3d7b44668dcae892b8a6863a.png)
解:
∫
0
x
t
f
(
x
−
t
)
d
t
=
u
=
x
−
t
∫
x
0
(
x
−
u
)
f
(
u
)
d
(
x
−
u
)
=
∫
0
x
(
x
−
u
)
f
(
u
)
d
u
因
f
(
x
)
连续,故
∫
0
x
f
(
t
)
d
t
与
∫
0
x
(
x
−
u
)
f
(
u
)
d
u
均可导.
在方程
∫
0
x
f
(
t
)
d
t
+
∫
0
x
(
x
−
u
)
f
(
u
)
d
u
=
a
x
2
①两边同时对
x
求导:
f
(
x
)
+
∫
0
x
f
(
u
)
d
u
=
2
a
x
②,令
x
=
0
,
可得
f
(
0
)
=
0
f
(
x
)
=
2
a
x
−
∫
0
x
f
(
u
)
d
u
,故
f
(
x
)
可导.
在②两边同时对
x
求导:
f
′
(
x
)
+
f
(
x
)
=
2
a
解得:
f
(
x
)
=
2
a
+
C
e
−
x
.
由
f
(
0
)
=
0
可得:
C
=
−
2
a
,
故
f
(
x
)
=
2
a
(
1
−
e
−
x
)
\begin{aligned} &\text{解:} \ \int_0^x t f(x-t)dt \xlongequal{u=x-t} \int_x^0 (x-u)f(u)d(x-u) = \int_0^x (x-u)f(u)du \\ &\text{因} f(x) \text{连续,故} \int_0^x f(t)dt \text{与} \int_0^x (x-u)f(u)du \text{均可导.}\\ &\text{在方程} \ \int_0^x f(t)dt + \int_0^x (x-u)f(u)du = ax^2 \qquad①\text{两边同时对} x \text{求导:} \\ &\quad f(x) + \int_0^x f(u)du = 2ax \quad ② ,\text{令} \ x=0, \text{可得} \ f(0)=0\\&f(x)=2ax - \int_0^x f(u)du,\text{故} f(x) \text{可导.} \\ &\text{在} ② \text{两边同时对} x \text{求导:} \ f'(x) + f(x) = 2a \\ &\text{解得:} \ f(x) = 2a + C e^{-x}. \text{由} \ f(0)=0 \text{可得:} \ C=-2a, \ \text{故} \ f(x)=2a(1-e^{-x}) \end{aligned}
解: ∫0xtf(x−t)dtu=x−t∫x0(x−u)f(u)d(x−u)=∫0x(x−u)f(u)du因f(x)连续,故∫0xf(t)dt与∫0x(x−u)f(u)du均可导.在方程 ∫0xf(t)dt+∫0x(x−u)f(u)du=ax2①两边同时对x求导:f(x)+∫0xf(u)du=2ax②,令 x=0,可得 f(0)=0f(x)=2ax−∫0xf(u)du,故f(x)可导.在②两边同时对x求导: f′(x)+f(x)=2a解得: f(x)=2a+Ce−x.由 f(0)=0可得: C=−2a, 故 f(x)=2a(1−e−x)
(
2
)
∫
0
1
f
(
x
)
d
x
1
−
0
=
1
,
∫
0
1
2
a
(
1
−
e
−
x
)
d
x
=
2
a
+
2
a
e
−
x
∣
0
1
=
2
a
+
2
a
(
e
−
1
−
1
)
=
2
a
e
−
1
=
1
⟹
a
=
e
2
\begin{aligned} &(2) \ \frac{\int_0^1 f(x)dx}{1-0} = 1, \\ &\int_0^1 2a(1-e^{-x})dx = 2a + 2a e^{-x}\bigg|_0^1 \\ &= 2a + 2a(e^{-1}-1) = 2a e^{-1} = 1 \\ &\implies a = \frac{e}{2} \end{aligned}
(2) 1−0∫01f(x)dx=1,∫012a(1−e−x)dx=2a+2ae−x
01=2a+2a(e−1−1)=2ae−1=1⟹a=2e
【小结】求解积分方程的基本思路就是求导转化为微分方程,但是有三点需要注意一下:
1.
求导之前需要结合已知条件证明可导性;
2.
积分方程一般都是间接给出初始条件,在原方程中将
x
取某些特殊值即可得到初始条
件(一般取使积分上、下限相等的点);
3.
如果变限积分没有单独作为一项出现,即积分前有函数,首先需要将函数消掉,从而
通过一次求导使方程中不再含有变限积分。
\begin{aligned} &\text{【小结】求解积分方程的基本思路就是求导转化为微分方程,但是有三点需要注意一下:} \\ \\ &1. \text{求导之前需要结合已知条件证明可导性;} \\ \\ &2. \text{积分方程一般都是间接给出初始条件,在原方程中将} \ x \ \text{取某些特殊值即可得到初始条} \\ &\quad \text{件(一般取使积分上、下限相等的点);} \\ \\ &3. \text{如果变限积分没有单独作为一项出现,即积分前有函数,首先需要将函数消掉,从而} \\ &\quad \text{通过一次求导使方程中不再含有变限积分。} \end{aligned}
【小结】求解积分方程的基本思路就是求导转化为微分方程,但是有三点需要注意一下:1.求导之前需要结合已知条件证明可导性;2.积分方程一般都是间接给出初始条件,在原方程中将 x 取某些特殊值即可得到初始条件(一般取使积分上、下限相等的点);3.如果变限积分没有单独作为一项出现,即积分前有函数,首先需要将函数消掉,从而通过一次求导使方程中不再含有变限积分。
![![[Pasted image 20251211145421.png]]](https://i-blog.csdnimg.cn/direct/fe67f5b44c1b4817b1f8b706eb9eb8c6.png)
解:
∫
0
t
d
x
∫
0
t
−
x
f
′
(
x
+
y
)
d
y
=
f
(
t
)
−
1
2
t
⋅
t
对
∫
0
t
d
x
∫
0
t
−
x
f
′
(
x
+
y
)
d
(
x
+
y
)
(
积分变量是
y
,
x
是常数
)
=
∫
0
t
f
(
x
+
y
)
∣
y
=
0
y
=
t
−
x
d
x
=
∫
0
t
(
f
(
t
)
−
f
(
x
)
)
d
x
=
t
f
(
t
)
−
∫
0
t
f
(
x
)
d
x
在
t
f
(
t
)
−
∫
0
t
f
(
x
)
d
x
=
1
2
t
2
f
(
t
)
两边同时对
t
求导:
f
(
t
)
+
t
f
′
(
t
)
−
f
(
t
)
=
t
f
(
t
)
+
1
2
t
2
f
′
(
t
)
,
(
1
−
t
2
)
f
′
(
t
)
=
f
(
t
)
,
d
f
(
t
)
f
(
t
)
=
d
t
1
−
t
2
ln
f
(
t
)
=
−
2
ln
∣
2
−
t
∣
+
C
=
ln
C
(
2
−
t
)
2
,
f
(
t
)
=
C
(
2
−
t
)
2
,
由
f
(
0
)
=
1
⟹
C
=
4
,
故
f
(
x
)
=
4
(
2
−
x
)
2
,
0
≤
x
≤
1
\begin{aligned} &\text{解:} \int_0^t dx \int_0^{t-x} f'(x+y)dy = f(t) - \frac{1}{2}t \cdot t \\ \\ &\text{对} \int_0^t dx \int_0^{t-x} f'(x+y)d(x+y) \ (\text{积分变量是} y, x \text{是常数}) \\ &= \int_0^t \left. f(x+y) \right|_{y=0}^{y=t-x} dx = \int_0^t \left( f(t) - f(x) \right)dx = t f(t) - \int_0^t f(x)dx \\ \\ &\text{在} \ t f(t) - \int_0^t f(x)dx = \frac{1}{2}t^2 f(t) \text{两边同时对} t \text{求导:} \\ &f(t) + t f'(t) - f(t) = t f(t) + \frac{1}{2}t^2 f'(t), \quad \left( 1 - \frac{t}{2} \right) f'(t) = f(t), \\ &\frac{df(t)}{f(t)} = \frac{dt}{1 - \frac{t}{2}} \\ \\ &\ln f(t) = -2\ln|2 - t| + C = \ln \frac{C}{(2 - t)^2}, \ f(t) = \frac{C}{(2 - t)^2}, \\ &\text{由} f(0) = 1 \implies C = 4, \text{故} f(x) = \frac{4}{(2 - x)^2}, \ 0 \leq x \leq 1 \end{aligned}
解:∫0tdx∫0t−xf′(x+y)dy=f(t)−21t⋅t对∫0tdx∫0t−xf′(x+y)d(x+y) (积分变量是y,x是常数)=∫0tf(x+y)∣y=0y=t−xdx=∫0t(f(t)−f(x))dx=tf(t)−∫0tf(x)dx在 tf(t)−∫0tf(x)dx=21t2f(t)两边同时对t求导:f(t)+tf′(t)−f(t)=tf(t)+21t2f′(t),(1−2t)f′(t)=f(t),f(t)df(t)=1−2tdtlnf(t)=−2ln∣2−t∣+C=ln(2−t)2C, f(t)=(2−t)2C,由f(0)=1⟹C=4,故f(x)=(2−x)24, 0≤x≤1
【小结】条件中若给出的是二重积分的形式的方程,可以转化为定积分的形式得到积分方程。
\text{【小结】条件中若给出的是二重积分的形式的方程,可以转化为定积分的形式得到积分方程。}
【小结】条件中若给出的是二重积分的形式的方程,可以转化为定积分的形式得到积分方程。
微分方程的应用
利用微分学的知识列方程
![![[Pasted image 20251211145630.png]]](https://i-blog.csdnimg.cn/direct/422f242448fb4d76b0eac16046be97eb.png)
解:
y
′
=
(
u
(
x
)
cos
x
)
′
=
u
′
sec
x
+
u
sec
x
tan
x
,
y
′
′
=
u
′
′
sec
x
+
u
′
sec
x
tan
x
+
u
′
sec
x
tan
x
+
u
sec
x
tan
2
x
+
u
sec
x
sec
2
x
y
′
′
cos
x
−
2
y
′
sin
x
+
3
y
cos
x
=
u
′
′
+
2
u
′
tan
x
+
u
tan
2
x
+
u
sec
2
x
−
2
u
′
tan
x
−
2
u
tan
2
x
+
3
u
=
u
′
′
+
4
u
,
原方程化为
u
′
′
+
4
u
=
e
x
.
\begin{aligned} &\text{解:} \ y' = \left( \frac{u(x)}{\cos x} \right)' = u'\sec x + u \sec x \tan x, \\ \\ &y'' = u''\sec x + u'\sec x \tan x + u'\sec x \tan x + u \sec x \tan^2 x + u \sec x \sec^2 x \\ \\ &y''\cos x - 2y'\sin x + 3y\cos x \\ &= u'' + 2u'\tan x + u\tan^2 x + u\sec^2 x - 2u'\tan x - 2u\tan^2 x + 3u \\ &= u'' + 4u, \\ \\ &\text{原方程化为} \ u'' + 4u = e^x. \end{aligned}
解: y′=(cosxu(x))′=u′secx+usecxtanx,y′′=u′′secx+u′secxtanx+u′secxtanx+usecxtan2x+usecxsec2xy′′cosx−2y′sinx+3ycosx=u′′+2u′tanx+utan2x+usec2x−2u′tanx−2utan2x+3u=u′′+4u,原方程化为 u′′+4u=ex.
求解特征方程:
λ
2
+
4
=
0
移项得:
λ
2
=
−
4
根据复数运算规则,
−
1
=
i
,因此:
λ
=
±
−
4
=
±
2
i
即特征根为一对共轭复根:
λ
1
=
2
i
,
λ
2
=
−
2
i
\begin{aligned} &\text{求解特征方程:} \ \lambda^2 + 4 = 0 \\ &\text{移项得:} \ \lambda^2 = -4 \\ &\text{根据复数运算规则,} \ \sqrt{-1} = i,\text{因此:} \\ &\lambda = \pm \sqrt{-4} = \pm 2i \\ &\text{即特征根为一对共轭复根:} \ \lambda_1 = 2i, \ \lambda_2 = -2i \end{aligned}
求解特征方程: λ2+4=0移项得: λ2=−4根据复数运算规则, −1=i,因此:λ=±−4=±2i即特征根为一对共轭复根: λ1=2i, λ2=−2i
对于非齐次方程
u
′
′
+
4
u
=
e
x
,由于右端项是
e
x
(
属于
e
λ
x
型,其中
λ
=
1
)
,
且
λ
=
1
不是特征方程
λ
2
+
4
=
0
的根,因此设特解形式为:
u
∗
=
A
e
x
(
其中
A
为待定系数
)
求导得:
(
u
∗
)
′
=
A
e
x
,
(
u
∗
)
′
′
=
A
e
x
将
u
∗
,
(
u
∗
)
′
′
代入原非齐次方程:
A
e
x
+
4
⋅
A
e
x
=
e
x
合并同类项:
5
A
e
x
=
e
x
比较系数得:
5
A
=
1
⟹
A
=
1
5
因此特解为
u
∗
=
1
5
e
x
.
\begin{aligned} &\text{对于非齐次方程} \ u'' + 4u = e^x,\text{由于右端项是} e^x \ (\text{属于} e^{\lambda x} \text{型,其中} \lambda=1),\\ &\text{且} \lambda=1 \text{不是特征方程} \lambda^2+4=0 \text{的根,因此设特解形式为:} \\ &u^* = A e^x \ (\text{其中} A \text{为待定系数}) \\ \\ &\text{求导得:} \ (u^*)' = A e^x, \ (u^*)'' = A e^x \\ &\text{将} u^*, (u^*)'' \text{代入原非齐次方程:} \\ &A e^x + 4 \cdot A e^x = e^x \\ &\text{合并同类项:} \ 5A e^x = e^x \\ &\text{比较系数得:} \ 5A = 1 \implies A = \frac{1}{5} \\ \\ &\text{因此特解为} \ u^* = \frac{1}{5}e^x. \end{aligned}
对于非齐次方程 u′′+4u=ex,由于右端项是ex (属于eλx型,其中λ=1),且λ=1不是特征方程λ2+4=0的根,因此设特解形式为:u∗=Aex (其中A为待定系数)求导得: (u∗)′=Aex, (u∗)′′=Aex将u∗,(u∗)′′代入原非齐次方程:Aex+4⋅Aex=ex合并同类项: 5Aex=ex比较系数得: 5A=1⟹A=51因此特解为 u∗=51ex.
u
(
x
)
=
C
1
cos
2
x
+
C
2
sin
2
x
+
1
5
e
x
u(x) = C_1 \cos 2x + C_2 \sin 2x + \frac{1}{5}e^x
u(x)=C1cos2x+C2sin2x+51ex
y
=
C
1
cos
2
x
cos
x
+
C
2
sin
x
+
e
x
5
cos
x
y = \frac{C_1 \cos 2x}{\cos x} + C_2 \sin x + \frac{e^x}{5\cos x}
y=cosxC1cos2x+C2sinx+5cosxex
法2:
u
=
y
cos
x
=
y
(
x
)
cos
x
,
u
′
=
y
′
cos
x
−
y
sin
x
,
u
′
′
=
y
′
′
cos
x
−
2
y
′
sin
x
−
y
cos
x
,
原方程化简为
u
′
′
+
4
u
=
e
x
\begin{aligned} &\text{法2:} \\ &u = y \cos x = y(x) \cos x, \\ &u' = y' \cos x - y \sin x, \\ &u'' = y'' \cos x - 2y' \sin x - y \cos x, \\ &\text{原方程化简为} \ u'' + 4u = e^x \end{aligned}
法2:u=ycosx=y(x)cosx,u′=y′cosx−ysinx,u′′=y′′cosx−2y′sinx−ycosx,原方程化简为 u′′+4u=ex
![![[Pasted image 20251211145641.png]]](https://i-blog.csdnimg.cn/direct/9268999f7a8747909b6b14c30469ef1c.png)
解:
∂
z
∂
x
=
f
′
(
e
x
cos
y
)
⋅
e
x
cos
y
,
∂
z
∂
y
=
f
′
(
e
x
cos
y
)
⋅
e
x
(
−
sin
y
)
∂
2
z
∂
x
2
=
cos
y
(
e
x
f
′
(
e
x
cos
y
)
+
e
x
f
′
′
(
e
x
cos
y
)
⋅
e
x
cos
y
)
∂
2
z
∂
y
2
=
e
x
[
−
cos
y
f
′
(
e
x
cos
y
)
−
sin
y
f
′
′
(
e
x
cos
y
)
⋅
e
x
(
−
sin
y
)
]
∂
2
z
∂
x
2
+
∂
2
z
∂
y
2
=
e
2
x
f
′
′
(
e
x
cos
y
)
=
(
4
z
+
e
x
cos
y
)
e
2
x
,
故
f
′
′
(
u
)
−
u
=
4
f
(
u
)
f
′
′
(
u
)
−
4
f
(
u
)
=
u
\begin{aligned} &\text{解:} \\ &\frac{\partial z}{\partial x} = f'\left(e^x \cos y\right) \cdot e^x \cos y, \quad \frac{\partial z}{\partial y} = f'\left(e^x \cos y\right) \cdot e^x (-\sin y) \\ \\ &\frac{\partial^2 z}{\partial x^2} = \cos y \left( e^x f'\left(e^x \cos y\right) + e^x f''\left(e^x \cos y\right) \cdot e^x \cos y \right) \\ \\ &\frac{\partial^2 z}{\partial y^2} = e^x \left[ -\cos y f'\left(e^x \cos y\right) - \sin y f''\left(e^x \cos y\right) \cdot e^x (-\sin y) \right] \\ \\ &\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial y^2} = e^{2x} f''\left(e^x \cos y\right) = (4z + e^x \cos y) e^{2x}, \\ &\text{故} \ f''(u) - u = 4f(u) \\ \\ &f''(u) - 4f(u) = u \end{aligned}
解:∂x∂z=f′(excosy)⋅excosy,∂y∂z=f′(excosy)⋅ex(−siny)∂x2∂2z=cosy(exf′(excosy)+exf′′(excosy)⋅excosy)∂y2∂2z=ex[−cosyf′(excosy)−sinyf′′(excosy)⋅ex(−siny)]∂x2∂2z+∂y2∂2z=e2xf′′(excosy)=(4z+excosy)e2x,故 f′′(u)−u=4f(u)f′′(u)−4f(u)=u
齐次方程的通解为
C
1
e
2
u
+
C
2
e
−
2
u
.
设非齐次特解为
a
u
+
b
,
代入得
a
=
−
1
4
,
b
=
0.
故
f
(
u
)
=
C
1
e
2
u
+
C
2
e
−
2
u
−
1
4
u
,
由
f
(
0
)
=
0
,
f
′
(
0
)
=
0
,
得
C
1
=
1
16
,
C
2
=
−
1
16
,
因此
f
(
u
)
=
1
16
e
2
u
−
1
16
e
−
2
u
−
1
4
u
\begin{aligned} &\text{齐次方程的通解为} \ C_1 e^{2u} + C_2 e^{-2u}. \ \text{设非齐次特解为} \ au + b, \\ &\text{代入得} \ a = -\frac{1}{4}, \ b = 0. \ \text{故} \\ &f(u) = C_1 e^{2u} + C_2 e^{-2u} - \frac{1}{4}u, \\ &\text{由} \ f(0)=0, \ f'(0)=0, \ \text{得} \ C_1 = \frac{1}{16}, \ C_2 = -\frac{1}{16}, \\ &\text{因此} \ f(u) = \frac{1}{16}e^{2u} - \frac{1}{16}e^{-2u} - \frac{1}{4}u \end{aligned}
齐次方程的通解为 C1e2u+C2e−2u. 设非齐次特解为 au+b,代入得 a=−41, b=0. 故f(u)=C1e2u+C2e−2u−41u,由 f(0)=0, f′(0)=0, 得 C1=161, C2=−161,因此 f(u)=161e2u−161e−2u−41u
步骤1:设定特解形式
非齐次方程为
f
′
′
(
u
)
−
4
f
(
u
)
=
u
,右端是一次多项式
u
,
且
0
不是齐次方程特征根(特征方程
λ
2
−
4
=
0
的根为
λ
=
±
2
),
因此设特解为一次多项式:
f
∗
(
u
)
=
a
u
+
b
(
a
,
b
为待定系数
)
.
步骤2:求特解的各阶导数
(
f
∗
)
′
=
d
d
u
(
a
u
+
b
)
=
a
,
(
f
∗
)
′
′
=
d
d
u
(
a
)
=
0.
步骤3:代入原非齐次方程
将
(
f
∗
)
′
′
=
0
、
f
∗
(
u
)
=
a
u
+
b
代入
f
′
′
(
u
)
−
4
f
(
u
)
=
u
:
0
−
4
(
a
u
+
b
)
=
u
,
展开整理:
−
4
a
u
−
4
b
=
u
.
步骤4:对比系数求解
等式两边同类项系数需相等:
{
一次项系数:
−
4
a
=
1
常数项:
−
4
b
=
0
解得:
a
=
−
1
4
,
b
=
0.
因此特解为:
f
∗
(
u
)
=
−
1
4
u
.
\begin{aligned} &\text{步骤1:设定特解形式} \\ &\text{非齐次方程为} \ f''(u) - 4f(u) = u,\text{右端是一次多项式} u,\\ &\text{且} 0 \text{不是齐次方程特征根(特征方程} \lambda^2 - 4 = 0 \text{的根为} \lambda=\pm2),\\ &\text{因此设特解为一次多项式:} f^*(u) = au + b \ (a,b \text{为待定系数}). \\ \\ &\text{步骤2:求特解的各阶导数} \\ &(f^*)' = \frac{d}{du}(au + b) = a, \\ &(f^*)'' = \frac{d}{du}(a) = 0. \\ \\ &\text{步骤3:代入原非齐次方程} \\ &\text{将} (f^*)'' = 0、f^*(u) = au + b \text{代入} f''(u) - 4f(u) = u:\\ &0 - 4(au + b) = u, \\ &\text{展开整理:} -4au - 4b = u. \\ \\ &\text{步骤4:对比系数求解} \\ &\text{等式两边同类项系数需相等:} \\ &\begin{cases} \text{一次项系数:} -4a = 1 \\ \text{常数项:} -4b = 0 \end{cases} \\ &\text{解得:} a = -\frac{1}{4}, \ b = 0. \\ \\ &\text{因此特解为:} f^*(u) = -\frac{1}{4}u. \end{aligned}
步骤1:设定特解形式非齐次方程为 f′′(u)−4f(u)=u,右端是一次多项式u,且0不是齐次方程特征根(特征方程λ2−4=0的根为λ=±2),因此设特解为一次多项式:f∗(u)=au+b (a,b为待定系数).步骤2:求特解的各阶导数(f∗)′=dud(au+b)=a,(f∗)′′=dud(a)=0.步骤3:代入原非齐次方程将(f∗)′′=0、f∗(u)=au+b代入f′′(u)−4f(u)=u:0−4(au+b)=u,展开整理:−4au−4b=u.步骤4:对比系数求解等式两边同类项系数需相等:{一次项系数:−4a=1常数项:−4b=0解得:a=−41, b=0.因此特解为:f∗(u)=−41u.
![![[Pasted image 20251211145654.png]]](https://i-blog.csdnimg.cn/direct/dc384068815c45eebb1871058f4a325c.png)
解:
L
在点
(
x
,
y
)
的切线的斜率为
d
y
d
x
=
y
′
(
t
)
x
′
(
t
)
=
−
sin
t
f
′
(
t
)
.
过该点的切线方程为
Y
−
y
=
−
sin
t
f
′
(
t
)
(
X
−
x
)
.
切线与
x
轴交点为
y
f
′
(
t
)
sin
t
+
x
=
cos
t
sin
t
f
′
(
t
)
+
f
(
t
)
=
f
′
(
t
)
cot
t
+
f
(
t
)
.
到切点的距离为
(
f
′
(
t
)
cot
t
+
f
(
t
)
−
f
(
t
)
)
2
+
(
cos
t
−
0
)
2
=
1
,
即
(
f
′
(
t
)
cot
t
)
2
+
cos
2
t
=
1
,
(
f
′
(
t
)
)
2
=
sin
2
t
⋅
tan
2
t
,
故
f
′
(
t
)
=
sin
2
t
cos
t
.
\begin{aligned} &\text{解:} L \text{在点} (x,y) \text{的切线的斜率为} \ \frac{dy}{dx} = \frac{y'(t)}{x'(t)} = \frac{-\sin t}{f'(t)}. \\ \\ &\text{过该点的切线方程为} \ Y - y = -\frac{\sin t}{f'(t)}(X - x). \\ \\ &\text{切线与} x \text{轴交点为} \ \frac{y f'(t)}{\sin t} + x = \frac{\cos t}{\sin t} f'(t) + f(t) = f'(t)\cot t + f(t). \\ \\ &\text{到切点的距离为} \ \sqrt{\left( f'(t)\cot t + f(t) - f(t) \right)^2 + \left( \cos t - 0 \right)^2} = 1, \\ &\text{即} \ \left( f'(t)\cot t \right)^2 + \cos^2 t = 1, \\ &\left( f'(t) \right)^2 = \sin^2 t \cdot \tan^2 t, \ \text{故} \ f'(t) = \frac{\sin^2 t}{\cos t}. \end{aligned}
解:L在点(x,y)的切线的斜率为 dxdy=x′(t)y′(t)=f′(t)−sint.过该点的切线方程为 Y−y=−f′(t)sint(X−x).切线与x轴交点为 sintyf′(t)+x=sintcostf′(t)+f(t)=f′(t)cott+f(t).到切点的距离为 (f′(t)cott+f(t)−f(t))2+(cost−0)2=1,即 (f′(t)cott)2+cos2t=1,(f′(t))2=sin2t⋅tan2t, 故 f′(t)=costsin2t.
f
(
t
)
=
∫
sin
2
t
cos
t
d
t
=
∫
1
−
cos
2
t
cos
t
d
t
=
∫
(
sec
t
−
cos
t
)
d
t
=
ln
∣
sec
t
+
tan
t
∣
−
sin
t
+
C
,
由
f
(
0
)
=
0
⟹
C
=
0
,
故
f
(
t
)
=
ln
∣
sec
t
+
tan
t
∣
−
sin
t
\begin{aligned} f(t) &= \int \frac{\sin^2 t}{\cos t} dt = \int \frac{1 - \cos^2 t}{\cos t} dt = \int (\sec t - \cos t) dt \\ &= \ln|\sec t + \tan t| - \sin t + C, \\ &\text{由} \ f(0) = 0 \implies C = 0, \\ \text{故} \ f(t) &= \ln|\sec t + \tan t| - \sin t \end{aligned}
f(t)故 f(t)=∫costsin2tdt=∫cost1−cos2tdt=∫(sect−cost)dt=ln∣sect+tant∣−sint+C,由 f(0)=0⟹C=0,=ln∣sect+tant∣−sint
S
=
∫
a
b
y
(
x
)
d
x
=
∫
0
π
2
cos
t
d
(
f
(
t
)
)
=
∫
0
π
2
cos
t
⋅
sin
2
t
cos
t
d
t
=
∫
0
π
2
sin
2
t
d
t
=
π
4
\begin{aligned} S &= \int_a^b y(x)dx = \int_0^{\frac{\pi}{2}} \cos t \, d(f(t)) = \int_0^{\frac{\pi}{2}} \cos t \cdot \frac{\sin^2 t}{\cos t} dt \\ &= \int_0^{\frac{\pi}{2}} \sin^2 t dt = \frac{\pi}{4} \end{aligned}
S=∫aby(x)dx=∫02πcostd(f(t))=∫02πcost⋅costsin2tdt=∫02πsin2tdt=4π
利用积分学的知识列方程
![![[Pasted image 20251211145713.png]]](https://i-blog.csdnimg.cn/direct/b6ba6ba126ba40ac8b08296e51cebccd.png)
解:设点
(
x
,
y
)
处的切线方程为
Y
−
y
=
y
′
(
X
−
x
)
,
与
x
轴交点为
x
−
y
y
′
.
S
1
=
1
2
(
x
−
(
x
−
y
y
′
)
)
⋅
y
=
y
2
2
y
′
,
S
2
=
∫
0
x
y
(
u
)
d
u
,
2
S
1
−
S
2
=
y
2
y
′
−
∫
0
x
y
(
u
)
d
u
=
1
①
两边求导:
2
y
⋅
y
′
⋅
y
′
−
y
2
⋅
y
′
′
(
y
′
)
2
−
y
=
0
,
即
(
y
′
)
2
=
y
y
′
′
.
令
p
=
y
′
,
y
′
′
=
p
d
p
d
y
,
代入得
p
2
−
y
⋅
p
d
p
d
y
=
0
⟹
d
p
p
=
d
y
y
,
解得
p
=
C
1
y
⟹
y
′
=
C
1
y
.
分离变量:
d
y
y
=
C
1
d
x
⟹
ln
y
=
C
1
x
+
C
2
⟹
y
=
C
2
e
C
1
x
.
由
y
(
0
)
=
1
⟹
C
2
=
1
;
代入①令
x
=
0
,
得
y
′
(
0
)
=
1
⟹
C
1
=
1
,
故
y
=
e
x
.
\begin{aligned} &\text{解:设点} (x,y) \text{处的切线方程为} \\ &Y - y = y'(X - x), \ \text{与} x \text{轴交点为} x - \frac{y}{y'}. \\ \\ &S_1 = \frac{1}{2}\left( x - \left( x - \frac{y}{y'} \right) \right) \cdot y = \frac{y^2}{2y'}, \quad S_2 = \int_0^x y(u)du, \\ \\ &2S_1 - S_2 = \frac{y^2}{y'} - \int_0^x y(u)du = 1 \quad ① \\ \\ &\text{两边求导:} \ \frac{2y \cdot y' \cdot y' - y^2 \cdot y''}{(y')^2} - y = 0, \ \text{即} (y')^2 = y y''. \\ \\ &\text{令} p = y', \ y'' = p \frac{dp}{dy}, \ \text{代入得} \ p^2 - y \cdot p \frac{dp}{dy} = 0 \implies \frac{dp}{p} = \frac{dy}{y}, \\ &\text{解得} \ p = C_1 y \implies y' = C_1 y. \\ \\ &\text{分离变量:} \ \frac{dy}{y} = C_1 dx \implies \ln y = C_1 x + C_2 \implies y = C_2 e^{C_1 x}. \\ \\ &\text{由} y(0)=1 \implies C_2=1; \ \text{代入} ① \text{令} x=0, \text{得} y'(0)=1 \implies C_1=1, \\ &\text{故} \ y = e^x. \end{aligned}
解:设点(x,y)处的切线方程为Y−y=y′(X−x), 与x轴交点为x−y′y.S1=21(x−(x−y′y))⋅y=2y′y2,S2=∫0xy(u)du,2S1−S2=y′y2−∫0xy(u)du=1①两边求导: (y′)22y⋅y′⋅y′−y2⋅y′′−y=0, 即(y′)2=yy′′.令p=y′, y′′=pdydp, 代入得 p2−y⋅pdydp=0⟹pdp=ydy,解得 p=C1y⟹y′=C1y.分离变量: ydy=C1dx⟹lny=C1x+C2⟹y=C2eC1x.由y(0)=1⟹C2=1; 代入①令x=0,得y′(0)=1⟹C1=1,故 y=ex.
法2:
(
y
′
)
2
−
y
y
′
′
y
′
=
(
y
y
′
)
′
=
0
,
故
y
y
′
=
C
.
后面同上
.
\begin{aligned} &\text{法2:} \ \frac{(y')^2 - y y''}{y'} = \left( \frac{y}{y'} \right)' = 0, \\ &\text{故} \ \frac{y}{y'} = C. \ \text{后面同上}. \end{aligned}
法2: y′(y′)2−yy′′=(y′y)′=0,故 y′y=C. 后面同上.
![![[Pasted image 20251211145731.png]]](https://i-blog.csdnimg.cn/direct/fac2dd596efd41aea482360160b9c505.png)
![![[Pasted image 20251211145753.png]]](https://i-blog.csdnimg.cn/direct/1dd9e109fb3c42af8bca68bf3005048d.png)
解:①
t
时刻液面高度是
y
.
π
x
2
=
π
φ
2
(
y
)
=
π
⋅
2
2
+
π
t
t
=
x
2
−
4
=
φ
2
(
y
)
−
4
\begin{aligned} &\text{解:①} t \text{时刻液面高度是} y. \\ &\pi x^2 = \pi \varphi^2(y) \\ &= \pi \cdot 2^2 + \pi t \\ &t = x^2 - 4 = \varphi^2(y) - 4 \end{aligned}
解:①t时刻液面高度是y.πx2=πφ2(y)=π⋅22+πtt=x2−4=φ2(y)−4
②
V
=
∫
0
y
π
x
2
(
u
)
d
u
=
∫
0
y
π
φ
2
(
u
)
d
u
=
3
t
=
3
(
φ
2
(
y
)
−
4
)
两边同时对
y
求导:
π
φ
2
(
y
)
=
6
φ
(
y
)
φ
′
(
y
)
π
φ
(
y
)
=
6
φ
′
(
y
)
d
φ
(
y
)
φ
(
y
)
=
π
6
d
y
ln
φ
(
y
)
=
π
6
y
+
C
φ
(
y
)
=
C
e
π
6
y
,
由
φ
(
0
)
=
2
,
C
=
2
φ
(
y
)
=
2
e
π
6
y
\begin{aligned} &\text{②} \ V = \int_0^y \pi x^2(u)du = \int_0^y \pi \varphi^2(u)du = 3t \\ &= 3\left( \varphi^2(y) - 4 \right) \\ \\ &\text{两边同时对} y \text{求导:} \\ &\pi \varphi^2(y) = 6 \varphi(y) \varphi'(y) \\ &\pi \varphi(y) = 6 \varphi'(y) \\ \\ &\frac{d\varphi(y)}{\varphi(y)} = \frac{\pi}{6} dy \\ &\ln \varphi(y) = \frac{\pi}{6} y + C \\ &\varphi(y) = C e^{\frac{\pi}{6} y}, \ \text{由} \varphi(0)=2,C=2\\& \varphi(y) = 2 e^{\frac{\pi}{6} y}\end{aligned}
② V=∫0yπx2(u)du=∫0yπφ2(u)du=3t=3(φ2(y)−4)两边同时对y求导:πφ2(y)=6φ(y)φ′(y)πφ(y)=6φ′(y)φ(y)dφ(y)=6πdylnφ(y)=6πy+Cφ(y)=Ce6πy, 由φ(0)=2,C=2φ(y)=2e6πy
利用物理规律列方程
![![[Pasted image 20251211145813.png]]](https://i-blog.csdnimg.cn/direct/b8033e28302f464fb1587f8de3689f83.png)
解:由题可得:
F
=
v
,
又
v
′
=
d
v
d
t
=
−
a
=
−
F
m
=
−
F
=
−
v
d
v
d
t
=
−
v
⟹
−
d
v
v
=
d
t
积分得:
ln
v
=
−
t
+
C
⟹
v
=
C
e
−
t
,
由
t
=
0
,
v
=
v
0
⟹
C
=
v
0
,
故
v
=
v
0
e
−
t
.
当
v
=
v
0
3
时,
v
0
3
=
v
0
e
−
t
⟹
t
=
ln
3.
s
=
∫
0
ln
3
v
0
e
−
t
d
t
=
v
0
(
−
e
−
t
)
∣
0
ln
3
=
2
3
v
0
\begin{aligned} &\text{解:由题可得:} F = v, \ \text{又} \ v' = \frac{dv}{dt} = -a = -\frac{F}{m} = -F = -v \\ \\ &\frac{dv}{dt} = -v \implies -\frac{dv}{v} = dt \\ &\text{积分得:} \ln v = -t + C \implies v = Ce^{-t}, \\ &\text{由} \ t=0, \ v=v_0 \implies C = v_0, \\ &\text{故} \ v = v_0 e^{-t}. \\ \\ &\text{当} \ v = \frac{v_0}{3} \text{时,} \frac{v_0}{3} = v_0 e^{-t} \implies t = \ln 3. \\ \\ &s = \int_0^{\ln 3} v_0 e^{-t} dt = v_0 \left. (-e^{-t}) \right|_0^{\ln 3} = \frac{2}{3}v_0 \end{aligned}
解:由题可得:F=v, 又 v′=dtdv=−a=−mF=−F=−vdtdv=−v⟹−vdv=dt积分得:lnv=−t+C⟹v=Ce−t,由 t=0, v=v0⟹C=v0,故 v=v0e−t.当 v=3v0时,3v0=v0e−t⟹t=ln3.s=∫0ln3v0e−tdt=v0(−e−t)
0ln3=32v0
【小结】运用物理规律列方程除了会用到牛顿第二定律外,还会用到导数的物理意义,
即位移的导数是速度,速度的导数是加速度。
\begin{aligned}&【小结】运用物理规律列方程除了会用到牛顿第二定律外,还会用到导数的物理意义, \\&即位移的导数是速度,速度的导数是加速度。\end{aligned}
【小结】运用物理规律列方程除了会用到牛顿第二定律外,还会用到导数的物理意义,即位移的导数是速度,速度的导数是加速度。
![![[Pasted image 20251211145938.png]]](https://i-blog.csdnimg.cn/direct/fddf6b192d934c6ba8fbf87d026695ba.png)
解:设 t 时刻物体的温度为 T ( t ) ,由题得: T ′ ( t ) = k ( T ( t ) − 20 ) 分离变量: d T T − 20 = k d t 积分得: T = C e k t + 20 由 T ( 0 ) = 120 ,得 C = 100 ;由 T ( 30 ) = 30 ,得 k = − 1 30 ln 10. 当 T = 21 时, 21 = 100 e − 1 30 ln 10 ⋅ t + 20 解得 t = 60 ,还需要冷却30分钟 \begin{aligned} &\text{解:设} t \text{时刻物体的温度为} T(t),\text{由题得:} \\ &T'(t) = k\left( T(t) - 20 \right) \\ &\text{分离变量:} \ \frac{dT}{T - 20} = k dt \\ &\text{积分得:} \ T = Ce^{kt} + 20 \\ \\ &\text{由} T(0)=120,\text{得} C=100;\text{由} T(30)=30,\text{得} k = -\frac{1}{30}\ln 10. \\ \\ &\text{当} T=21 \text{时,} 21 = 100e^{-\frac{1}{30}\ln 10 \cdot t} + 20 \\ &\text{解得} t=60,\text{还需要冷却30分钟} \end{aligned} 解:设t时刻物体的温度为T(t),由题得:T′(t)=k(T(t)−20)分离变量: T−20dT=kdt积分得: T=Cekt+20由T(0)=120,得C=100;由T(30)=30,得k=−301ln10.当T=21时,21=100e−301ln10⋅t+20解得t=60,还需要冷却30分钟
485

被折叠的 条评论
为什么被折叠?



