Laplace transform解传热偏微分方程

Cooling of a Sphere in Contact with a Well-Stirred Fluid

A homogeneous solid sphere of radius R, initially a t a uniform temperature T1 T 1 , is suddenly immersed at time t=0 t = 0 in a volume Vf V f of well-stirred fluid of temperature T0 T 0 in an insulated tank. It is desired to find the thermal diffusivity αx=ksρsC^ps α x = k s ρ s C ^ p s of the solid by observing the change of the fluid temperature Tf T f with time. We use the following dimensionless variables
Dimensionless solid temperature:

Θs(ξ,τ)=T1TsT1T0(1) (1) Θ s ( ξ , τ ) = T 1 − T s T 1 − T 0

Dimensionless fluid temperature:
Θs(ξ,τ)=T1TsT1T0(2) (2) Θ s ( ξ , τ ) = T 1 − T s T 1 − T 0

Dimensionless radial coordinate:
ξ=rR(3) (3) ξ = r R

Dimensionless time:
τ=αstR2(4) (4) τ = α s t R 2

Solution:

For the solid sphere,
Heat transfer equation

Θsτ=1ξ2ξ(ξ2Θsξ)(5) (5) ∂ Θ s ∂ τ = 1 ξ 2 ∂ ∂ ξ ( ξ 2 ∂ Θ s ∂ ξ )

Initial condition
At τ=0 τ = 0 , Θs=0 Θ s = 0 (6) (6)
Boundary condition
At ξ=1 ξ = 1 , Θs=Θf Θ s = Θ f (7) (7)
At ξ=0 ξ = 0 , Θs=Finite Θ s = F i n i t e (8) (8)

For the fluid,

dΘfdτ=3BΘsξξ=1(9) (9) d Θ f d τ = − 3 B ∂ Θ s ∂ ξ | ξ = 1

in which
B=ρfC^pfVfρsC^psVs B = ρ f C ^ p f V f ρ s C ^ p s V s
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值