Equation of Motion for a Newtonian Fluid with Constant ρ
ρ
and μ
μ
控制方程通式:
ρDvvDt=−∇p+μ∇2vv+ρgg
ρ
D
v
v
D
t
=
−
∇
p
+
μ
∇
2
v
v
+
ρ
g
g
1.直角坐标系(x,y,z
x
,
y
,
z
)
直角坐标系Cartesian coordinates ( x,y,z
x,y,z
):
NO.
ρ(∂vx∂t+vx∂vx∂x+vy∂vx∂y+vz∂vx∂z)=−∂p∂x+μ[∂2vx∂x+∂2vx∂y+∂2vx∂z]+ρgx
ρ
(
∂
v
x
∂
t
+
v
x
∂
v
x
∂
x
+
v
y
∂
v
x
∂
y
+
v
z
∂
v
x
∂
z
)
=
−
∂
p
∂
x
+
μ
[
∂
2
v
x
∂
x
+
∂
2
v
x
∂
y
+
∂
2
v
x
∂
z
]
+
ρ
g
x
1-1
ρ(∂vy∂t+vx∂vy∂x+vy∂vy∂y+vz∂vy∂z)=−∂p∂y+μ[∂2vy∂x+∂2vy∂y+∂2vy∂z]+ρgy
ρ
(
∂
v
y
∂
t
+
v
x
∂
v
y
∂
x
+
v
y
∂
v
y
∂
y
+
v
z
∂
v
y
∂
z
)
=
−
∂
p
∂
y
+
μ
[
∂
2
v
y
∂
x
+
∂
2
v
y
∂
y
+
∂
2
v
y
∂
z
]
+
ρ
g
y
1-2
ρ(∂vz∂t+vx∂vz∂x+vy∂vz∂y+vz∂vz∂z)=−∂p∂z+μ[∂2vz∂x+∂2vz∂y+∂2vz∂z]+ρgz
ρ
(
∂
v
z
∂
t
+
v
x
∂
v
z
∂
x
+
v
y
∂
v
z
∂
y
+
v
z
∂
v
z
∂
z
)
=
−
∂
p
∂
z
+
μ
[
∂
2
v
z
∂
x
+
∂
2
v
z
∂
y
+
∂
2
v
z
∂
z
]
+
ρ
g
z
1-3
2.圆柱坐标系(r,θ,z
r
,
θ
,
z
)
圆柱坐标系Cylindrical coordinates coordinates (r, θ, z
r,
θ
, z
):
NO.
ρ(∂vr∂t+vr∂vr∂r+vθr∂vr∂θ+vz∂vr∂z−v2θr)=−∂p∂r+μ[∂∂r(1r∂∂r(rvr))+1r2∂2vr∂θ2+∂2vr∂z2−2r2∂vθ∂θ]+ρgr
ρ
(
∂
v
r
∂
t
+
v
r
∂
v
r
∂
r
+
v
θ
r
∂
v
r
∂
θ
+
v
z
∂
v
r
∂
z
−
v
θ
2
r
)
=
−
∂
p
∂
r
+
μ
[
∂
∂
r
(
1
r
∂
∂
r
(
r
v
r
)
)
+
1
r
2
∂
2
v
r
∂
θ
2
+
∂
2
v
r
∂
z
2
−
2
r
2
∂
v
θ
∂
θ
]
+
ρ
g
r
2-1
ρ(∂vθ∂t+vr∂vθ∂r+vθr∂vθ∂θ+vz∂vθ∂z+vrvθr)=−1r∂p∂θ+μ[∂∂r(1r∂∂r(rvθ))+1r2∂2vθ∂θ2+∂2vθ∂z2+2r2∂vr∂θ]+ρgθ
ρ
(
∂
v
θ
∂
t
+
v
r
∂
v
θ
∂
r
+
v
θ
r
∂
v
θ
∂
θ
+
v
z
∂
v
θ
∂
z
+
v
r
v
θ
r
)
=
−
1
r
∂
p
∂
θ
+
μ
[
∂
∂
r
(
1
r
∂
∂
r
(
r
v
θ
)
)
+
1
r
2
∂
2
v
θ
∂
θ
2
+
∂
2
v
θ
∂
z
2
+
2
r
2
∂
v
r
∂
θ
]
+
ρ
g
θ
2-2
ρ(∂vz∂t+vr∂vz∂r+vθr∂vz∂θ+vz∂vz∂z)=−∂p∂z+μ[1r∂∂r(r∂vz∂r)+1r2∂2vz∂θ2+∂2vz∂z2]+ρgz
ρ
(
∂
v
z
∂
t
+
v
r
∂
v
z
∂
r
+
v
θ
r
∂
v
z
∂
θ
+
v
z
∂
v
z
∂
z
)
=
−
∂
p
∂
z
+
μ
[
1
r
∂
∂
r
(
r
∂
v
z
∂
r
)
+
1
r
2
∂
2
v
z
∂
θ
2
+
∂
2
v
z
∂
z
2
]
+
ρ
g
z
2-3
3.球坐标系(r,θ,ϕ
r
,
θ
,
ϕ
)
球坐标系Spherical coordinates(r, θ, ϕ
r,
θ
,
ϕ
):
NO.
ρ(∂vr∂t+vr∂vr∂r+vθr∂vr∂θ+vϕrsinθ∂vr∂ϕ−v2θ+v2ϕr)=−∂p∂r+μ[1r2∂2∂r2(r2vr)+1rsinθ∂∂θ(sinθ∂vr∂θ)+1r2sin2θ∂2vr∂ϕ2]+ρgr
ρ
(
∂
v
r
∂
t
+
v
r
∂
v
r
∂
r
+
v
θ
r
∂
v
r
∂
θ
+
v
ϕ
r
s
i
n
θ
∂
v
r
∂
ϕ
−
v
θ
2
+
v
ϕ
2
r
)
=
−
∂
p
∂
r
+
μ
[
1
r
2
∂
2
∂
r
2
(
r
2
v
r
)
+
1
r
s
i
n
θ
∂
∂
θ
(
s
i
n
θ
∂
v
r
∂
θ
)
+
1
r
2
s
i
n
2
θ
∂
2
v
r
∂
ϕ
2
]
+
ρ
g
r
3-1
ρ(∂vθ∂t+vr∂vθ∂r+vθr∂vθ∂θ+vϕrsinθ∂vθ∂ϕ+vrvθ−v2ϕcotθr)=−1r∂p∂θ+μ[1r2∂∂r(r2∂vθ∂r)+1r2∂∂θ(1sinθ∂∂θ(vθsinθ))+1r2sin2θ∂2vθ∂ϕ2+2r2∂vr∂θ−2cotθr2sinθ∂vϕ∂ϕ]+ρgθ
ρ
(
∂
v
θ
∂
t
+
v
r
∂
v
θ
∂
r
+
v
θ
r
∂
v
θ
∂
θ
+
v
ϕ
r
s
i
n
θ
∂
v
θ
∂
ϕ
+
v
r
v
θ
−
v
ϕ
2
c
o
t
θ
r
)
=
−
1
r
∂
p
∂
θ
+
μ
[
1
r
2
∂
∂
r
(
r
2
∂
v
θ
∂
r
)
+
1
r
2
∂
∂
θ
(
1
s
i
n
θ
∂
∂
θ
(
v
θ
s
i
n
θ
)
)
+
1
r
2
s
i
n
2
θ
∂
2
v
θ
∂
ϕ
2
+
2
r
2
∂
v
r
∂
θ
−
2
c
o
t
θ
r
2
s
i
n
θ
∂
v
ϕ
∂
ϕ
]
+
ρ
g
θ
3-2
ρ(∂vϕ∂t+vr∂vϕ∂r+vθr∂vϕ∂θ+vϕrsinθ∂vϕ∂ϕ+vϕvr+vθvϕcotθr)=−1rsinθ∂p∂ϕ+μ[1r2∂∂r(r2∂vϕ∂r)+1r2∂∂θ(1sinθ∂∂θ(vϕsinθ))+1r2sin2θ∂2vϕ∂ϕ2+2r2sinθ∂vr∂ϕ+2cotθr2sinθ∂vθ∂ϕ]+ρgϕ
ρ
(
∂
v
ϕ
∂
t
+
v
r
∂
v
ϕ
∂
r
+
v
θ
r
∂
v
ϕ
∂
θ
+
v
ϕ
r
s
i
n
θ
∂
v
ϕ
∂
ϕ
+
v
ϕ
v
r
+
v
θ
v
ϕ
c
o
t
θ
r
)
=
−
1
r
s
i
n
θ
∂
p
∂
ϕ
+
μ
[
1
r
2
∂
∂
r
(
r
2
∂
v
ϕ
∂
r
)
+
1
r
2
∂
∂
θ
(
1
s
i
n
θ
∂
∂
θ
(
v
ϕ
s
i
n
θ
)
)
+
1
r
2
s
i
n
2
θ
∂
2
v
ϕ
∂
ϕ
2
+
2
r
2
s
i
n
θ
∂
v
r
∂
ϕ
+
2
c
o
t
θ
r
2
s
i
n
θ
∂
v
θ
∂
ϕ
]
+
ρ
g
ϕ
3-3
参考文献
R. Byron Bird, Warren E. stewart, Edwin N. Lightfoot.* Transport phenomena:Revised second edition* John Wiely &Sons, Inc.