恒电势电流曲线和浓度分布(i-t curve)

在无搅拌条件下,研究了电极表面反应物浓度始终为0的半反应。通过拉普拉斯变换解决限制电流与浓度的关系方程,并给出初始和边界条件。进一步探讨电流随时间的变化及浓度随距离的变化情况。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Test condition
  1. No stirring;
  2. The concentration of reactant at the electrode surface is always 0.
    Half reaction:
    O+neR(a)(a)O+ne→R

    The equation of the limiting current versus concentration will be
    COt=DO2COx2(1)(1)∂CO∂t=DO∂2CO∂x2

    Initial condition:(Concentration is homogeneous)
    CO(x,0)=CO(2)(2)CO(x,0)=CO∗

    Boundary conditions:
    CO(,t)=CO(3)(3)CO(∞,t)=CO∗

    CO(0,t)=0(t>0)(4)(4)CO(0,t)=0(t>0)
Apply Laplace transform to solve Eq.(1)

Laplace transform function

F(s)=0f(t)estdt(5)(5)F(s)=∫0∞f(t)e−stdt

Apply Laplace transform on the left part of Eq(1)
L{ COt}=0COtestdt=COest0+s0COestdt=CO(x,)esCO(x,0)e0+s0COestdt=CO+s0COest
%% FeFET 建模与仿真 - MATLAB 实现 % 本代码实现了铁电场效应晶体管(FeFET)的C-VI-V特性仿真 % 基于文件2.pdf3.pdf中的物理模型 %% 主程序 function FeFET_Simulation() %% 物理常数 epsilon_0 = 8.854e-14; % 真空介电常数 (F/cm) q = 1.602e-19; % 电子电荷 (C) k = 1.380649e-23; % 玻尔兹曼常数 (J/K) T = 300; % 温度 (K) beta = q / (k * T); % 热电压的倒数 (V^{-1}) %% 材料参数 params = struct(... 'N_D', 1e16, ... % cm^{-3}, 衬底施主掺杂浓度 't_F', 200e-7, ... % cm, 铁电层厚度 (200 nm) 'epsilon_F', 200, ... % 铁电层相对介电常数 'epsilon_i', 3.9, ... % 绝缘层相对介电常数 'epsilon_Si', 11.7, ... % Si相对介电常数 'P_s', 10e-6, ... % C/cm^2, 饱极化 'P_r', 8.5e-6, ... % C/cm^2, 剩余极化 'E_c', 50e3, ... % V/cm, 矫顽电场 'delta', 75e3, ... % V/cm, 铁电材料参数 'EOT', 4e-7, ... % cm, 等效氧化层厚度 'A_f', 100e-8, ... % cm^2, 栅面积 'W', 10e-4, ... % cm, 沟道宽度 'L', 1e-4, ... % cm, 沟道长度 'mu', 200, ... % cm^2/V·s, 载流子迁移率 'n_i', 1.5e10 ... % cm^{-3}, 本征载流子浓度 ); %% 计算派生参数 % 热电压 phi_t = k * T / q; % 德拜长度 params.L_D = sqrt(epsilon_0 * params.epsilon_Si * phi_t / (q * params.N_D)); % 费米势 params.psi_b = -phi_t * log(params.N_D / params.n_i); % 绝缘层电容 params.C_i = params.A_f * epsilon_0 * params.epsilon_i / params.EOT; %% 读取外部P-E关系数据 pe_file = 'D:\code\phi\pe.txt'; if ~exist(pe_file, 'file') error('P-E关系文件未找到: %s', pe_file); end % 加载数据 pe_data = load(pe_file); E_ext = pe_data(:, 1); % MV/m P_ext = pe_data(:, 2); % C/m² % 将数据拆分为上扫下扫分支 [~, max_idx] = max(E_ext); E_up = E_ext(1:max_idx); % 上扫分支 P_up = P_ext(1:max_idx); E_down = E_ext(max_idx:end); % 下扫分支 P_down = P_ext(max_idx:end); % 转换为代码使用的单位 (V/cm, C/cm²) E_up = E_up * 1e4; % MV/m -> V/cm P_up = P_up * 1e-4; % C/m² -> C/cm² E_down = E_down * 1e4; P_down = P_down * 1e-4; % 创建插值函数 pe_interp_up = griddedInterpolant(E_up, P_up, 'linear', 'linear'); pe_interp_down = griddedInterpolant(E_down, P_down, 'linear', 'linear'); %% 设置扫描电压范围 V_g_cv = linspace(-5, 5, 30); % C-V栅压扫描 V_ds_iv = linspace(0, 5, 20); % I-V漏压扫描 V_g_iv = 3.0; % I-V固定栅压 V_ds_transfer = 0.1; % 转移特性固定漏压 fprintf('开始C-V仿真 (上扫)...\n'); C_up = cv_simulation(V_g_cv, 'up', params, epsilon_0, beta, pe_interp_up, pe_interp_down); fprintf('开始C-V仿真 (下扫)...\n'); C_down = cv_simulation(fliplr(V_g_cv), 'down', params, epsilon_0, beta, pe_interp_up, pe_interp_down); C_down = fliplr(C_down); % 反转结果以匹配电压顺序 fprintf('开始I-V仿真 (ON状态)...\n'); I_d_on = iv_simulation(V_g_iv, V_ds_iv, 'up', params, epsilon_0, beta, k, T, q, pe_interp_up, pe_interp_down); fprintf('开始I-V仿真 (OFF状态)...\n'); I_d_off = iv_simulation(V_g_iv, V_ds_iv, 'down', params, epsilon_0, beta, k, T, q, pe_interp_up, pe_interp_down); fprintf('开始转移特性仿真...\n'); V_g_transfer = linspace(0, 5, 20); I_d_transfer = zeros(size(V_g_transfer)); for i = 1:length(V_g_transfer) I_d_transfer(i) = iv_simulation(V_g_transfer(i), [V_ds_transfer], 'up', params, epsilon_0, beta, k, T, q, pe_interp_up, pe_interp_down); end %% 绘制结果 figure('Position', [100, 100, 1200, 900]); % 1. P-E曲线 subplot(2, 3, 1); plot(E_up, P_up, 'b-', 'LineWidth', 1.5); hold on; plot(E_down, P_down, 'r--', 'LineWidth', 1.5); xlabel('Electric Field (V/cm)'); ylabel('Polarization (C/cm^2)'); title('Ferroelectric P-E Curve'); grid on; legend('Up Sweep', 'Down Sweep', 'Location', 'best'); % 2. C-V曲线 subplot(2, 3, 2); plot(V_g_cv, C_up * 1e6, 'b-', 'LineWidth', 1.5); hold on; plot(V_g_cv, C_down * 1e6, 'r--', 'LineWidth', 1.5); xlabel('Gate Voltage (V)'); ylabel('Capacitance (\muF)'); title('MFIS Capacitor C-V Characteristics'); grid on; legend('Up Sweep', 'Down Sweep', 'Location', 'best'); % 3. I-V曲线 (ON/OFF状态) subplot(2, 3, 3); plot(V_ds_iv, I_d_on * 1e6, 'g-', 'LineWidth', 1.5); hold on; plot(V_ds_iv, I_d_off * 1e6, 'k--', 'LineWidth', 1.5); xlabel('Drain Voltage (V)'); ylabel('Drain Current (\muA)'); title(['FeMFET I-V Characteristics (V_g = ', num2str(V_g_iv), 'V)']); grid on; legend('ON State', 'OFF State', 'Location', 'best'); % 4. 不同栅压下的I-V曲线 subplot(2, 3, 4); V_g_list = [1.0, 2.0, 3.0, 4.0]; colors = lines(length(V_g_list)); for i = 1:length(V_g_list) I_d = iv_simulation(V_g_list(i), V_ds_iv, 'up', params, epsilon_0, beta, k, T, q, pe_interp_up, pe_interp_down); plot(V_ds_iv, I_d * 1e6, 'Color', colors(i,:), 'LineWidth', 1.5, ... 'DisplayName', ['V_g = ', num2str(V_g_list(i)), 'V']); hold on; end xlabel('Drain Voltage (V)'); ylabel('Drain Current (\muA)'); title('FeMFET I-V at Different Gate Voltages'); grid on; legend('show'); % 5. 转移特性曲线 subplot(2, 3, 5); semilogy(V_g_transfer, abs(I_d_transfer) * 1e6, 'mo-', 'LineWidth', 1.5, 'MarkerFaceColor', 'm'); xlabel('Gate Voltage (V)'); ylabel('Drain Current (\muA)'); title(['Transfer Characteristics (V_ds = ', num2str(V_ds_transfer), 'V)']); grid on; % 6. 内存窗口分析 subplot(2, 3, 6); memory_window = abs(C_up - C_down) * 1e6; plot(V_g_cv, memory_window, 'b-', 'LineWidth', 1.5); xlabel('Gate Voltage (V)'); ylabel('Memory Window (\muF)'); title('C-V Memory Window'); grid on; % 保存图像 output_dir = 'D:\code\phi'; if ~exist(output_dir, 'dir') mkdir(output_dir); end saveas(gcf, fullfile(output_dir, 'mfisfet_simulation_results.png')); fprintf('结果已保存至: %s\n', fullfile(output_dir, 'mfisfet_simulation_results.png')); % 保存数据 writematrix([V_g_cv', C_up'*1e6, C_down'*1e6], ... fullfile(output_dir, 'cv_data.txt'), 'Delimiter', 'tab'); writematrix([V_ds_iv', I_d_on'*1e6, I_d_off'*1e6], ... fullfile(output_dir, 'iv_data.txt'), 'Delimiter', 'tab'); fprintf('仿真数据已保存\n'); end % 主函数结束 %% 外部极化函数 function P = external_polarization(E, direction, pe_interp_up, pe_interp_down) if strcmp(direction, 'up') P = pe_interp_up(E); else % 'down' P = pe_interp_down(E); end end %% 半导体表面电荷密度 function Q_s_val = Q_s(psi_s, params, epsilon_0, beta) term = (params.n_i^2 / params.N_D^2) * (exp(-beta * psi_s) + beta * psi_s - 1) + ... (exp(beta * psi_s) - beta * psi_s - 1); Q_s_val = -sign(psi_s) * (sqrt(2) * epsilon_0 * params.epsilon_i) / (beta * params.L_D) * sqrt(term); end %% C-V 特性仿真 function C_total = cv_simulation(V_g, direction, params, epsilon_0, beta, pe_interp_up, pe_interp_down) C_total = zeros(size(V_g)); options = optimoptions('fsolve', 'Display', 'off', 'Algorithm', 'trust-region-dogleg', 'FunctionTolerance', 1e-6); % 初始猜测 psi_s0 = 0.1; E_f0 = 0.1; for i = 1:length(V_g) % 定义方程组 function F = equations(x) psi_s = x(1); E_f = x(2); % 计算极化 P = external_polarization(E_f, direction, pe_interp_up, pe_interp_down); % 计算表面电荷 Q_s_val = Q_s(psi_s, params, epsilon_0, beta); % 方程1: P = -Q_s eq1 = P + Q_s_val; % 方程2: V_G = psi_s + V_I + V_F V_i = -Q_s_val * params.EOT / (epsilon_0 * params.epsilon_i); V_f = E_f * params.t_F; eq2 = V_g(i) - (psi_s + V_i + V_f); F = [eq1; eq2]; end % 使用fsolve求解 try [sol, ~, exitflag] = fsolve(@equations, [psi_s0; E_f0], options); if exitflag > 0 psi_s = sol(1); E_f = sol(2); % 更新初始猜测 psi_s0 = psi_s; E_f0 = E_f; % 计算半导体电容 (公式4.5) term = (params.n_i^2 / params.N_D^2) * (-exp(-beta * psi_s) + 1) + ... (exp(beta * psi_s) - 1); % 数值保护 if term < 0 term = 1e-6; end C_si = (params.A_f * epsilon_0 * params.epsilon_i) / (sqrt(2) * params.L_D) * sqrt(term); % 铁电层电容 (公式4.6) C_f = params.A_f * epsilon_0 * params.epsilon_F / params.t_F; % 绝缘层电容 (公式4.7) C_i = params.C_i; % 总电容 (公式4.8) C_total(i) = 1 / (1/C_f + 1/C_i + 1/C_si); else if i > 1 C_total(i) = C_total(i-1); else C_total(i) = 1e-12; end warning('CV求解在V_g=%f时失败', V_g(i)); end catch if i > 1 C_total(i) = C_total(i-1); else C_total(i) = 1e-12; end warning('CV求解在V_g=%f时出错', V_g(i)); end end end %% 求解表面势 function psi_s = solve_surface_potential(V_g, V, direction, params, epsilon_0, beta, pe_interp_up, pe_interp_down) options = optimoptions('fsolve', 'Display', 'off', 'Algorithm', 'trust-region-dogleg', 'FunctionTolerance', 1e-6); % 初始猜测 psi_s0 = abs(params.psi_b) + 0.5; E_f0 = 0.1; % 定义方程组 function F = equations(x) psi_s = x(1); E_f = x(2); % 计算极化 P = external_polarization(E_f, direction, pe_interp_up, pe_interp_down); % 计算表面电荷 Q_s_val = Q_s(psi_s, params, epsilon_0, beta); % 方程1: P = -Q_s eq1 = P + Q_s_val; % 方程2: V_G = psi_s + V_I + V_F V_i = -Q_s_val * params.EOT / (epsilon_0 * params.epsilon_i); V_f = E_f * params.t_F; eq2 = V_g - (psi_s + V_i + V_f); F = [eq1; eq2]; end % 使用fsolve求解 [sol, ~, exitflag] = fsolve(@equations, [psi_s0; E_f0], options); if exitflag > 0 psi_s = sol(1); else psi_s = abs(params.psi_b); % 使用默认值 warning('表面势求解在V_g=%f, V=%f时失败', V_g, V); end end %% Pao-Sah 被积函数 function f = pao_sah_integrand(psi, V, V_g, direction, params, epsilon_0, beta, k, T, pe_interp_up, pe_interp_down) % 计算公式(21)中的内部表达式 term1 = exp(beta * psi) - beta * psi - 1; term2 = (params.n_i^2 / params.N_D^2) * exp(beta * V) * ... (exp(-beta * psi) + beta * psi * exp(-beta * V) - 1); % 添加数值保护 total_term = term1 + term2; if total_term <= 0 total_term = 1e-10; end % 计算电场 ξ(ψ,V) prefactor = (2 * params.N_D * k * T) / (epsilon_0 * params.epsilon_Si); xi = sqrt(prefactor * total_term); % 公式(20)被积函数 numerator = (params.n_i^2 / params.N_D) * exp(-beta * (psi - V)); % 避免除零 if xi < 1e-10 f = 0; else f = numerator / xi; end end %% I-V 特性仿真 function I_d = iv_simulation(V_g, V_ds, direction, params, epsilon_0, beta, k, T, q, pe_interp_up, pe_interp_down) I_d = zeros(size(V_ds)); for i = 1:length(V_ds) % 离散化沟道电势 V_points = linspace(0, V_ds(i), 10); integral_val = 0; for j = 1:length(V_points) V_val = V_points(j); % 求解该沟道电势下的表面势 psi_s = solve_surface_potential(V_g, V_val, direction, params, epsilon_0, beta, pe_interp_up, pe_interp_down); % 只在表面势大于费米势时积分 if psi_s > params.psi_b % 离散化表面势范围 psi_points = linspace(params.psi_b, psi_s, 20); % 计算被积函数值 integrand_vals = zeros(size(psi_points)); for m = 1:length(psi_points) % 使用m替代k避免冲突 integrand_vals(m) = pao_sah_integrand(psi_points(m), V_val, V_g, direction, ... params, epsilon_0, beta, k, T, pe_interp_up, pe_interp_down); end % 使用梯形法进行内层积分 inner_integral = trapz(psi_points, integrand_vals); % 计算dV (梯形法) if j == 1 dV = V_points(2) - V_points(1); elseif j == length(V_points) dV = V_points(end) - V_points(end-1); else dV = (V_points(j+1) - V_points(j-1)) / 2; end integral_val = integral_val + inner_integral * dV; end end % 计算漏极电流 I_d(i) = q * params.mu * (params.W / params.L) * integral_val; end end % 运行主程序 FeFET_Simulation();错误: 文件: FeFET.m 行: 211 列: 9 函数定义放置或嵌套错误。
最新发布
06-17
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值