Test condition
- No stirring;
- The concentration of reactant at the electrode surface is always 0.
Half reaction:
O+ne→R(a)(a)O+ne→R
The equation of the limiting current versus concentration will be
∂CO∂t=DO∂2CO∂x2(1)(1)∂CO∂t=DO∂2CO∂x2
Initial condition:(Concentration is homogeneous)
CO(x,0)=C∗O(2)(2)CO(x,0)=CO∗
Boundary conditions:
CO(∞,t)=C∗O(3)(3)CO(∞,t)=CO∗
CO(0,t)=0(t>0)(4)(4)CO(0,t)=0(t>0)
Apply Laplace transform to solve Eq.(1)
Laplace transform function
F(s)=∫∞0f(t)e−stdt(5)(5)F(s)=∫0∞f(t)e−stdt
Apply Laplace transform on the left part of Eq(1)
L{∂CO∂t}=∫∞0∂CO∂te−stdt=COe−st∣∣∣∞0+s∫∞0COe−stdt=CO(x,∞)e−s∞−CO(x,0)e0+s∫∞0COe−stdt=−C∗O+s∫∞0COe−stdt(6)L{∂CO∂t}=∫0∞∂CO∂te−stdt=COe−st|0∞+s∫0∞COe−stdt=CO(x,∞)e−s∞−CO(x,0)e0+s∫0∞COe−stdt(6)=−CO∗+s∫0∞COe−stdt
Define
C¯¯¯¯O(x,s)=∫∞0COe−stdt(7)(7)C¯O(x,s)=∫0∞COe−stdt
L{DO∂2CO∂x2}=∫∞0DO∂2CO∂x2e−stdt=DO∂2∂x2∫∞0COe−stdt=DO∂2C¯¯¯¯O(x,s)∂x2(8)L{DO∂2CO∂x2}=∫0∞DO∂2CO∂x2e−stdt=DO∂2∂x2∫0∞COe−stdt(8)=DO∂2C¯O(x,s)∂x2
After Laplace transform, Eq(1) becomes
sC¯¯¯¯O(x,s)=DO∂2C¯¯¯¯O(x,s)∂x2+C∗O(9)(9)sC¯O(x,s)=DO∂2C¯O(x,s)∂x2+CO∗
The solution of the ODE is:
C¯¯¯¯O(x,s)=A1expsDO−−−−√x+A2exp(−sDO−−−−√x)+A3(10)(10)C¯O(x,s)=A1expsDOx+A2exp(−sDOx)+A3
where A1A1, A2A2 and A3A3are constant.
Apply Laplace transform on boundary conditions, the we can get
C¯¯¯¯O(∞,s)=C∗Os(11)(11)C¯O(∞,s)=CO∗s
C¯¯¯¯O(0,s)=0(12)(12)C¯O(0,s)=0
After substitution, we can solve
A1=0(13)(13)A1=0
A2=−C∗Os(14)(14)A2=−CO∗s
A3=C∗Os(15)(15)A3=CO∗s
Hence the solution should be
C¯¯¯¯O(x,s)=−C∗Osexp(−sDO−−−−√x)+C∗Os(16)(16)C¯O(x,s)=−CO∗sexp(−sDOx)+CO∗s
Current-time profile
It is known that the flux at the electrode surface is proportional to the current, we can get the current
−JO(0,t)=i(t)nFA=DO∂CO(x,t)∂x∣∣∣x=0(17)(17)−JO(0,t)=i(t)nFA=DO∂CO(x,t)∂x|x=0
Applying the Laplace transform on Eq(17) gives
i¯(t)nFA=DO∂C¯¯¯¯O(x,s)∂x∣∣∣x=0(18)(18)i¯(t)nFA=DO∂C¯O(x,s)∂x|x=0
Substitution of Eq (16) into Eq (18) gives
i¯(s)nFA=DOC∗OssDO−−−−√exp(−sDO−−−−√)x∣∣∣x=0(19)(19)i¯(s)nFA=DOCO∗ssDOexp(−sDO)x|x=0
it becomes
i¯(s)nFA=DOC∗OssDO−−−−√=C∗ODOs−−−−√(20)(20)i¯(s)nFA=DOCO∗ssDO=CO∗DOs
It yields
i¯(s)=nFAD1/2OC∗Os1/2(21)(21)i¯(s)=nFADO1/2CO∗s1/2
applying the form
L−1{1s√}=L−1{1π−−√⋅π−−√20s√}=1π−−√L−1{π−−√20s√}(22)L−1{1s}=L−1{1π⋅π20s}(22)=1πL−1{π20s}
use Inverse Laplace Transform table
L−1{(2n−1)!π−−√2nsn+1/2}=tn−1/2(23)(23)L−1{(2n−1)!π2nsn+1/2}=tn−1/2
L−1{1s√}=πt−−√(24)(24)L−1{1s}=πt
so the applying the inverse Laplace transform on Eq(21) gives
i(t)=nFAD1/2OC∗Oπ1/2t1/2(25)(25)i(t)=nFADO1/2CO∗π1/2t1/2
which is called Cottrell equation
Concentration-distance profile
Applying Inverse Laplace transform on Eq(16) gives
CO(x,t)=C∗O(1−erfcx2DOt−−−−√)(26)(26)CO(x,t)=CO∗(1−erfcx2DOt)
or
CO(x,t)C∗O=1−erfcx2DOt−−−−√=erfx2DOt−−−−√(27)(27)CO(x,t)CO∗=1−erfcx2DOt=erfx2DOt

在无搅拌条件下,研究了电极表面反应物浓度始终为0的半反应。通过拉普拉斯变换解决限制电流与浓度的关系方程,并给出初始和边界条件。进一步探讨电流随时间的变化及浓度随距离的变化情况。

被折叠的 条评论
为什么被折叠?



