恒电势电流曲线和浓度分布(i-t curve)

在无搅拌条件下,研究了电极表面反应物浓度始终为0的半反应。通过拉普拉斯变换解决限制电流与浓度的关系方程,并给出初始和边界条件。进一步探讨电流随时间的变化及浓度随距离的变化情况。
Test condition
  1. No stirring;
  2. The concentration of reactant at the electrode surface is always 0.
    Half reaction:
    O+neR(a)(a)O+ne→R

    The equation of the limiting current versus concentration will be
    COt=DO2COx2(1)(1)∂CO∂t=DO∂2CO∂x2

    Initial condition:(Concentration is homogeneous)
    CO(x,0)=CO(2)(2)CO(x,0)=CO∗

    Boundary conditions:
    CO(,t)=CO(3)(3)CO(∞,t)=CO∗

    CO(0,t)=0(t>0)(4)(4)CO(0,t)=0(t>0)
Apply Laplace transform to solve Eq.(1)

Laplace transform function

F(s)=0f(t)estdt(5)(5)F(s)=∫0∞f(t)e−stdt

Apply Laplace transform on the left part of Eq(1)
L{COt}=0COtestdt=COest0+s0COestdt=CO(x,)esCO(x,0)e0+s0COestdt=CO+s0COestdt(6)L{∂CO∂t}=∫0∞∂CO∂te−stdt=COe−st|0∞+s∫0∞COe−stdt=CO(x,∞)e−s∞−CO(x,0)e0+s∫0∞COe−stdt(6)=−CO∗+s∫0∞COe−stdt

Define
C¯¯¯¯O(x,s)=0COestdt(7)(7)C¯O(x,s)=∫0∞COe−stdt

L{DO2COx2}=0DO2COx2estdt=DO2x20COestdt=DO2C¯¯¯¯O(x,s)x2(8)L{DO∂2CO∂x2}=∫0∞DO∂2CO∂x2e−stdt=DO∂2∂x2∫0∞COe−stdt(8)=DO∂2C¯O(x,s)∂x2

After Laplace transform, Eq(1) becomes
sC¯¯¯¯O(x,s)=DO2C¯¯¯¯O(x,s)x2+CO(9)(9)sC¯O(x,s)=DO∂2C¯O(x,s)∂x2+CO∗

The solution of the ODE is:
C¯¯¯¯O(x,s)=A1expsDOx+A2exp(sDOx)+A3(10)(10)C¯O(x,s)=A1exp⁡sDOx+A2exp⁡(−sDOx)+A3

where A1A1, A2A2 and A3A3are constant.
Apply Laplace transform on boundary conditions, the we can get

C¯¯¯¯O(,s)=COs(11)(11)C¯O(∞,s)=CO∗s

C¯¯¯¯O(0,s)=0(12)(12)C¯O(0,s)=0

After substitution, we can solve
A1=0(13)(13)A1=0

A2=COs(14)(14)A2=−CO∗s

A3=COs(15)(15)A3=CO∗s

Hence the solution should be

C¯¯¯¯O(x,s)=COsexp(sDOx)+COs(16)(16)C¯O(x,s)=−CO∗sexp⁡(−sDOx)+CO∗s
Current-time profile

It is known that the flux at the electrode surface is proportional to the current, we can get the current

JO(0,t)=i(t)nFA=DOCO(x,t)xx=0(17)(17)−JO(0,t)=i(t)nFA=DO∂CO(x,t)∂x|x=0

Applying the Laplace transform on Eq(17) gives
i¯(t)nFA=DOC¯¯¯¯O(x,s)xx=0(18)(18)i¯(t)nFA=DO∂C¯O(x,s)∂x|x=0

Substitution of Eq (16) into Eq (18) gives

i¯(s)nFA=DOCOssDOexp(sDO)xx=0(19)(19)i¯(s)nFA=DOCO∗ssDOexp⁡(−sDO)x|x=0

it becomes

i¯(s)nFA=DOCOssDO=CODOs(20)(20)i¯(s)nFA=DOCO∗ssDO=CO∗DOs

It yields
i¯(s)=nFAD1/2OCOs1/2(21)(21)i¯(s)=nFADO1/2CO∗s1/2

applying the form
L1{1s}=L1{1ππ20s}=1πL1{π20s}(22)L−1{1s}=L−1{1π⋅π20s}(22)=1πL−1{π20s}

use Inverse Laplace Transform table
L1{(2n1)!π2nsn+1/2}=tn1/2(23)(23)L−1{(2n−1)!π2nsn+1/2}=tn−1/2

L1{1s}=πt(24)(24)L−1{1s}=πt

so the applying the inverse Laplace transform on Eq(21) gives

i(t)=nFAD1/2OCOπ1/2t1/2(25)(25)i(t)=nFADO1/2CO∗π1/2t1/2

which is called Cottrell equation
Concentration-distance profile

Applying Inverse Laplace transform on Eq(16) gives

CO(x,t)=CO(1erfcx2DOt)(26)(26)CO(x,t)=CO∗(1−erfcx2DOt)

or
CO(x,t)CO=1erfcx2DOt=erfx2DOt(27)(27)CO(x,t)CO∗=1−erfcx2DOt=erfx2DOt
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值