平板电极电势阶跃扩散电流的严格推导
1. 控制方程建立
1.1 基本假设
- 一维半无限扩散体系(x≥0x \geq 0x≥0)
- 氧化还原电对:O+ne−⇌RO + ne^- \rightleftharpoons RO+ne−⇌R
- 初始条件:
cO(x,0)=c∗,cR(x,0)=0 c_O(x,0) = c^*,\quad c_R(x,0) = 0 cO(x,0)=c∗,cR(x,0)=0 - 边界条件:
cO(∞,t)=c∗,cR(∞,t)=0 c_O(\infty,t) = c^*,\quad c_R(\infty,t) = 0 cO(∞,t)=c∗,cR(∞,t)=0
1.2 Fick第二定律
∂cO∂t=DO∂2cO∂x2(1)∂cR∂t=DR∂2cR∂x2(2) \frac{\partial c_O}{\partial t} = D_O \frac{\partial^2 c_O}{\partial x^2} \quad (1) \\ \frac{\partial c_R}{\partial t} = D_R \frac{\partial^2 c_R}{\partial x^2} \quad (2) ∂t∂cO=DO∂x2∂2cO(1)∂t∂cR=DR∂x2∂2cR(2)
2. Laplace变换求解
2.1 变换后方程
定义变换:
L{c(x,t)}=c^(x,s) \mathcal{L}\{c(x,t)\} = \hat{c}(x,s) L{c(x,t)}=c^(x,s)
得到:
sc^O−c∗=DOd2c^Odx2(3)sc^R=DRd2c^Rdx2(4)
s\hat{c}_O - c^* = D_O \frac{d^2\hat{c}_O}{dx^2} \quad (3) \\
s\hat{c}_R = D_R \frac{d^2\hat{c}_R}{dx^2} \quad (4)
sc^O−c∗=DOdx2d2c^O(3)sc^R=DRdx2d2c^R(4)
2.2 通解形式
c^O(x,s)=c∗s+A(s)e−xs/DO(5)c^R(x,s)=B(s)e−xs/DR(6) \hat{c}_O(x,s) = \frac{c^*}{s} + A(s)e^{-x\sqrt{s/D_O}} \quad (5) \\ \hat{c}_R(x,s) = B(s)e^{-x\sqrt{s/D_R}} \quad (6) c^O(x,s)=sc∗+A(s)e−xs/DO(5)c^R(x,s)=B(s)e−xs/DR(6)
2.3 边界条件处理
(1) 流量平衡:
DOdc^Odx∣x=0+DRdc^Rdx∣x=0=0 D_O \left.\frac{d\hat{c}_O}{dx}\right|_{x=0} + D_R \left.\frac{d\hat{c}_R}{dx}\right|_{x=0} = 0 DOdxdc^Ox=0+DRdxdc^Rx=0=0
(2) Nernst条件:
c^O(0,s)c^R(0,s)=θ=exp[nFRT(Ef−E∘)] \frac{\hat{c}_O(0,s)}{\hat{c}_R(0,s)} = \theta = \exp\left[\frac{nF}{RT}(E_f - E^\circ)\right] c^R(0,s)c^O(0,s)=θ=exp[RTnF(Ef−E∘)]
3. 电流密度推导
3.1 表面流量计算
i^(s)=nFDOdc^Odx∣x=0=−nFDOA(s)sDO \hat{i}(s) = nFD_O \left.\frac{d\hat{c}_O}{dx}\right|_{x=0} = -nFD_O A(s)\sqrt{\frac{s}{D_O}} i^(s)=nFDOdxdc^Ox=0=−nFDOA(s)DOs
3.2 系数求解
联立方程解得:
A(s)=−c∗s(1+1θDODR)−1
A(s) = -\frac{c^*}{s}\left(1 + \frac{1}{\theta}\sqrt{\frac{D_O}{D_R}}\right)^{-1}
A(s)=−sc∗(1+θ1DRDO)−1
3.3 Laplace逆变换
利用变换对:
L−1{1s}=1πt \mathcal{L}^{-1}\left\{\frac{1}{\sqrt{s}}\right\} = \frac{1}{\sqrt{\pi t}} L−1{s1}=πt1
得到Cottrell方程:
i(t)=nFc∗DOπt(1+1θDODR)−1
i(t) = \frac{nFc^*\sqrt{D_O}}{\sqrt{\pi t}} \left(1 + \frac{1}{\theta}\sqrt{\frac{D_O}{D_R}}\right)^{-1}
i(t)=πtnFc∗DO(1+θ1DRDO)−1
4. 特例分析
4.1 完全还原(θ→∞\theta \to \inftyθ→∞)
i(t)=nFc∗DOπt i(t) = nFc^*\sqrt{\frac{D_O}{\pi t}} i(t)=nFc∗πtDO
4.2 等扩散系数(DO=DRD_O = D_RDO=DR)
i(t)=nFc∗DOπt⋅θ1+θ i(t) = \frac{nFc^*\sqrt{D_O}}{\sqrt{\pi t}} \cdot \frac{\theta}{1+\theta} i(t)=πtnFc∗DO⋅1+θθ
5. 数学验证
5.1 量纲分析
[i]=C⋅mol−1⋅mol⋅cm−3⋅cm2⋅s−1/2s1/2=A⋅cm−2 [i] = \frac{C\cdot mol^{-1} \cdot mol\cdot cm^{-3} \cdot cm^2\cdot s^{-1/2}}{s^{1/2}} = A\cdot cm^{-2} [i]=s1/2C⋅mol−1⋅mol⋅cm−3⋅cm2⋅s−1/2=A⋅cm−2
5.2 极限行为
- t→0+t\to 0^+t→0+:i(t)→∞i(t) \to \inftyi(t)→∞
- t→∞t\to \inftyt→∞:i(t)→0i(t) \to 0i(t)→0
6.参数影响分析
| 参数变化 | 对电流的影响 | 对浓度分布的影响 | 物理机制说明 |
|---|---|---|---|
| c ↑* | 线性增大i ∝ c* | 各位置浓度幅值同比增加 | 本体浓度增加直接提升电流 |
| D_O ↑ | 平方根增大i ∝ √D_O | 浓度梯度区域扩展加快 | 传质速率提升 |
| θ ↑ (电势负移) | 渐近趋近极限值 | 电极表面[O]降低,[R]升高 | Nernst平衡移动导致 |
附录:关键公式
| 公式 | 说明 |
|---|---|
| erfc(x)=1−erf(x)\text{erfc}(x) = 1-\text{erf}(x)erfc(x)=1−erf(x) | 互补误差函数 |
| L{t−1/2}=π/s\mathcal{L}\{t^{-1/2}\} = \sqrt{\pi/s}L{t−1/2}=π/s | Laplace变换对 |
373

被折叠的 条评论
为什么被折叠?



