Half-wave potential(半波电位)推导之一

本文探讨了在无搅拌条件下,快速动力学电化学实验中,平面板电极上半反应的动力学特性。通过Nerst方程描述电位变化,并使用Laplace变换解析求解氧化剂和还原剂浓度随时间变化的偏微分方程,得到电流密度与时间的关系。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Test condition

  1. No stirring;
  2. Fast kinetics
  3. Step to an arbitrary potential suddenly
  4. Cottrell-like experiment
  5. Planar plate electrode
    Half reaction:

O+ne⇌R(1)O+ne{\rightleftharpoons} R \tag{1}O+neR(1)
In the case of Nerstian equation, the potential can be expressed as
E=E0′−RTnFln⁡CO(0,t)CR(0,t)(2)E=E^{0'}-\dfrac {RT}{nF} \ln \dfrac {C_{O}(0,t)}{C_{R}(0,t)} \tag {2}E=E0nFRTlnCR(0,t)CO(0,t)(2)
Here we define
θ=CO(0,t)CR(0,t)=exp⁡[nFRT(E−E0′)](3)\theta=\dfrac {C_{O}(0,t)}{C_{R}(0,t)}=\exp \left [\dfrac{nF} {RT} (E-E^{0'}) \right] \tag{3}θ=CR(0,t)CO(0,t)=exp[RTnF(EE0)](3)
The governing equations of the reductant and oxidant will be
∂CO(0,t)∂t=DO∂2CO(0,t)∂x2(4)\dfrac{\partial C_O(0,t)}{\partial t}=D_O \dfrac{\partial ^2 C_O(0,t)}{\partial x^2} \tag{4}tCO(0,t)=DOx22CO(0,t)(4)
∂CR(0,t)∂t=DR∂2CR(0,t)∂x2(5)\dfrac{\partial C_R(0,t)}{\partial t}=D_R \dfrac{\partial ^2 C_R(0,t)}{\partial x^2} \tag{5}tCR(0,t)=DRx22CR(0,t)(5)

Initial condition:(Concentration is homogeneous)
CO(x,0)=CO∗(6) C_O(x,0)=C_O ^* \tag{6}CO(x,0)=CO(6)
CR(x,0)=0(7) C_R(x,0)=0 \tag{7}CR(x,0)=0(7)
Boundary conditions:
CO(∞,t)=CO∗(t>0)(8)C_O(\infty,t)=C_O ^* \quad (t>0) \tag{8}CO(,t)=CO(t>0)(8)
CR(∞,t)=0(t>0)(9)C_R(\infty,t)=0 \quad (t>0) \tag{9}CR(,t)=0(t>0)(9)
DO∂CO(0,t)∂x+DR∂CR(0,t)∂x=0(10)D_O \dfrac{\partial C_O(0,t)}{\partial x} +D_R \dfrac{\partial C_R(0,t)}{\partial x} =0 \tag{10}DOxCO(0,t)+DRxCR(0,t)=0(10)
Apply Laplace transform on Equation(4)-(10) to solve the equations
Laplace transform function
F(s)=∫0∞f(t)e−stdt(11)F (s)=\int_0^\infty f(t)e^{-st}dt \tag{11} F(s)=0f(t)estdt(11)
Apply the transformation on these equations:
C‾O(∞,s)=CO∗s(12)\overline C_O(\infty,s)=\dfrac{C_O^*}{s} \tag{12}CO(,s)=sCO(12)
C‾O(0,s)=0(13)\overline C_O(0,s)=0 \tag{13}CO(0,s)=0(13)

DO∂C‾O(0,t)∂x+DR∂C‾R(0,t)∂x=0(14)D_O \dfrac{\partial \overline C_O(0,t)}{\partial x} +D_R \dfrac{\partial \overline C_R(0,t)}{\partial x} =0 \tag{14}DOxCO(0,t)+DRxCR(0,t)=0(14)
Using (12) and (13) we can get the solution
C‾O(x,s)=A(s)exp⁡(−sDOx)+CO∗s(15)\overline C_O(x,s)=A(s) \exp{\left (-\sqrt{\dfrac{s}{D_O}}x \right)}+\dfrac{C_O^*}{s} \tag{15}CO(x,s)=A(s)exp(DOsx)+sCO(15)
C‾R(x,s)=B(s)exp⁡(−sDRx)(16)\overline C_R(x,s)=B(s) \exp{\left (-\sqrt{\dfrac{s}{D_R}}x \right)} \tag{16}CR(x,s)=B(s)exp(DRsx)(16)
Apply (14) the relation between A(s)A(s)A(s) and B(s)B(s)B(s)
B(s)=−A(s)ξ(17)B(s)=-A(s)\xi \tag{17}B(s)=A(s)ξ(17),
where
ξ=DODR(18)\xi = \sqrt{\dfrac{D_O}{D_R} } \tag{18}ξ=DRDO(18)
Hence the results are:
C‾O(x,s)=A(s)exp⁡(−sDOx)+CO∗s(15)\overline C_O(x,s)=A(s) \exp{\left (-\sqrt{\dfrac{s}{D_O}}x \right)}+\dfrac{C_O^*}{s} \tag{15}CO(x,s)=A(s)exp(DOsx)+sCO(15)
C‾R(x,s)=−A(s)ξexp⁡(−sDRx)(16)\overline C_R(x,s)=-A(s)\xi \exp{\left (-\sqrt{\dfrac{s}{D_R}}x \right)} \tag{16}CR(x,s)=A(s)ξexp(DRsx)(16)

Here we make the assumption: reversible electrochemical reaction at the surface of the electrode
CO(0,s)=θCR(0,s)(17)C_{O}(0,s)=\theta C_{R}(0,s) \tag{17}CO(0,s)=θCR(0,s)(17)
Thus
CO∗s+A(s)=−ξθA(s)(18)\dfrac{C_O^*}{s} +A(s)=-\xi \theta A(s) \tag{18}sCO+A(s)=ξθA(s)(18)
We can get A(s)A(s)A(s)
A(s)=−C‾O∗s(1+ξθ)(19)A(s)=-\dfrac{\overline C_O^*}{s(1+\xi \theta)} \tag {19}A(s)=s(1+ξθ)CO(19)
finally
C‾O(x,s)=−C‾O∗s(1+ξθ)exp⁡(−sDOx)+CO∗s(20)\overline C_O(x,s)=-\dfrac{\overline C_O^*}{s(1+\xi \theta)} \exp{\left (-\sqrt{\dfrac{s}{D_O}}x \right)}+\dfrac{C_O^*}{s} \tag{20}CO(x,s)=s(1+ξθ)COexp(DOsx)+sCO(20)
C‾R(x,s)=ξC‾O∗s(1+ξθ)exp⁡(−sDRx)(21)\overline C_R(x,s)=\dfrac{\xi \overline C_O^*}{s(1+\xi \theta)} \exp{\left (-\sqrt{\dfrac{s}{D_R}}x \right)} \tag{21}CR(x,s)=s(1+ξθ)ξCOexp(DRsx)(21)
Fick’s first law states that the flux is proportional to the concentration gradient
−JO(x,t)=DO∂CO(x,t)∂x(22)-J_O(x,t)=D_O \dfrac {\partial C_O(x,t)}{\partial x} \tag{22}JO(x,t)=DOxCO(x,t)(22)
Laplace tansformation gives
−JO(x,s)=DO∂CO(x,s)∂x(23)-J_O(x,s)=D_O \dfrac {\partial C_O(x,s)}{\partial x} \tag{23}JO(x,s)=DOxCO(x,s)(23)
Assumption: Cottrell experiment
i(t)=nFADO1/2CO∗π1/2t1/2(1+ξθ)(24)i(t)= \dfrac {nFAD_O^{1/2} C_O^*}{\pi ^{1/2} t^{1/2} (1+\xi \theta)}\tag{24}i(t)=π1/2t1/2(1+ξθ)nFADO1/2CO(24)
then
i(t)=id(t)1+ξθ(25)i(t)= \dfrac{i_d(t)}{1+\xi\theta} \tag{25}i(t)=1+ξθid(t)(25)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值