Introduction to Chukwa

Chukwa是一个灵活强大的平台,用于分布式数据收集及快速数据处理。它由Agent、Collector、ETL进程等组成,支持HDFS和HBase等多种存储方式,并提供HICC界面进行数据展示。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Chukwa aims to provide a flexible and powerful platform for distributed data collection and rapid data processing. Our goal is to produce a system that's usable today, but that can be modified to take advantage of newer storage technologies (HDFS appends, HBase, etc) as they mature. In order to maintain this flexibility, Chukwa is structured as a pipeline of collection and processing stages, with clean and narrow interfaces between stages. This will facilitate future innovation without breaking existing code.

Chukwa has five primary components:

  • Agents that run on each machine and emit data.
  • Collectors that receive data from the agent and write it to stable storage.
  • ETL Processes for parsing and archiving the data.
  • Data Analytics Scripts for aggregate Hadoop cluster health.
  • HICC, the Hadoop Infrastructure Care Center; a web-portal style interface for displaying data.

    Below is a figure showing the Chukwa data pipeline, annotated with data dwell times at each stage. A more detailed figure is available at the end of this document.

    A picture of the chukwa data pipeline

Agents and Adaptors

Chukwa agents do not collect some particular fixed set of data. Rather, they support dynamically starting and stopping Adaptors, which small dynamically-controllable modules that run inside the Agent process and are responsible for the actual collection of data.

These dynamically controllable data sources are called adaptors, since they generally are wrapping some other data source, such as a file or a Unix command-line tool. The Chukwa agent guide includes an up-to-date list of available Adaptors.

Data sources need to be dynamically controllable because the particular data being collected from a machine changes over time, and varies from machine to machine. For example, as Hadoop tasks start and stop, different log files must be monitored. We might want to increase our collection rate if we detect anomalies. And of course, it makes no sense to collect Hadoop metrics on an NFS server.

Data Model

Chukwa Adaptors emit data in Chunks. A Chunk is a sequence of bytes, with some metadata. Several of these are set automatically by the Agent or Adaptors. Two of them require user intervention: cluster name and datatype. Cluster name is specified in conf/chukwa-agent-conf.xml, and is global to each Agent process. Datatype describes the expected format of the data collected by an Adaptor instance, and it is specified when that instance is started.

The following table lists the Chunk metadata fields.

Field Meaning Source
Source Hostname where Chunk was generated Automatic
Cluster Cluster host is associated with Specified by user in agent config
Datatype Format of output Specified by user when Adaptor started
Sequence ID Offset of Chunk in stream Automatic, initial offset specified when Adaptor started
Name Name of data source Automatic, chosen by Adaptor

Conceptually, each Adaptor emits a semi-infinite stream of bytes, numbered starting from zero. The sequence ID specifies how many bytes each Adaptor has sent, including the current chunk. So if an adaptor emits a chunk containing the first 100 bytes from a file, the sequenceID of that Chunk will be 100. And the second hundred bytes will have sequence ID 200. This may seem a little peculiar, but it's actually the same way that TCP sequence numbers work.

Adaptors need to take sequence ID as a parameter so that they can resume correctly after a crash, and not send redundant data. When starting adaptors, it's usually save to specify 0 as an ID, but it's sometimes useful to specify something else. For instance, it lets you do things like only tail the second half of a file.

Collectors

Rather than have each adaptor write directly to HDFS, data is sent across the network to a collector process, that does the HDFS writes. Each collector receives data from up to several hundred hosts, and writes all this data to a single sink file, which is a Hadoop sequence file of serialized Chunks. Periodically, collectors close their sink files, rename them to mark them available for processing, and resume writing a new file. Data is sent to collectors over HTTP.

Collectors thus drastically reduce the number of HDFS files generated by Chukwa, from one per machine or adaptor per unit time, to a handful per cluster. The decision to put collectors between data sources and the data store has other benefits. Collectors hide the details of the HDFS file system in use, such as its Hadoop version, from the adaptors. This is a significant aid to configuration. It is especially helpful when using Chukwa to monitor a development cluster running a different version of Hadoop or when using Chukwa to monitor a non-Hadoop cluster.

For more information on configuring collectors, see the Collector documentation.

ETL Processes

Collectors can write data directly to HBase or sequence files. This is convenient for rapidly getting data committed to stable storage.

HBase provides index by primary key, and manage data compaction. It is better for continous monitoring of data stream, and periodically produce reports.

HDFS provides better throughput for working with large volume of data. It is more suitable for one time research analysis job . But it's less convenient for finding particular data items. As a result, Chukwa has a toolbox of MapReduce jobs for organizing and processing incoming data.

These jobs come in two kinds: Archiving and Demux. The archiving jobs simply take Chunks from their input, and output new sequence files of Chunks, ordered and grouped. They do no parsing or modification of the contents. (There are several different archiving jobs, that differ in precisely how they group the data.)

Demux, in contrast, take Chunks as input and parse them to produce ChukwaRecords, which are sets of key-value pairs. Demux can run as a MapReduce job or as part of Chukwa Collector.

For details on controlling this part of the pipeline, see the Administration guide. For details about the file formats, and how to use the collected data, see theProgramming guide.

Data Analytics Scripts

Data stored in HBase are aggregated by data analytic scripts to provide visualization and interpretation of health of Hadoop cluster. Data analytics scripts are written in PigLatin, the high level language provides easy to understand programming examples for data analyst to create additional scripts to visualize data on HICC.

HICC

HICC, the Hadoop Infrastructure Care Center is a web-portal style interface for displaying data. Data is fetched from HBase, which in turn is populated by collector or data analytic scripts that runs on the collected data, after Demux. The Administration guide has details on setting up HICC.

And now, the architecture picture of Chukwa:

Architecture
内容概要:本文针对国内加密货币市场预测研究较少的现状,采用BP神经网络构建了CCi30指数预测模型。研究选取2018年3月1日至2019年3月26日共391天的数据作为样本,通过“试凑法”确定最优隐结点数目,建立三层BP神经网络模型对CCi30指数收盘价进行预测。论文详细介绍了数据预处理、模型构建、训练及评估过程,包括数据归一化、特征工程、模型架构设计(如输入层、隐藏层、输出层)、模型编译与训练、模型评估(如RMSE、MAE计算)以及结果可视化。研究表明,该模型在短期内能较准确地预测指数变化趋势。此外,文章还讨论了隐层节点数的优化方法及其对预测性能的影响,并提出了若干改进建议,如引入更多技术指标、优化模型架构、尝试其他时序模型等。 适合人群:对加密货币市场预测感兴趣的研究人员、投资者及具备一定编程基础的数据分析师。 使用场景及目标:①为加密货币市场投资者提供一种新的预测工具和方法;②帮助研究人员理解BP神经网络在时间序列预测中的应用;③为后续研究提供改进方向,如数据增强、模型优化、特征工程等。 其他说明:尽管该模型在短期内表现出良好的预测性能,但仍存在一定局限性,如样本量较小、未考虑外部因素影响等。因此,在实际应用中需谨慎对待模型预测结果,并结合其他分析工具共同决策。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值