Z变换与离散化过程的分析
在信号处理和控制系统中,Z变换是一种重要的工具,它可以帮助我们将连续时间的信号转化为离散时间信号,从而适用于数字控制系统的分析与设计。接下来,我们通过一个具体例子,分析如何进行Z变换以及如何处理相关的部分分式分解。
1. 基本Z变换公式回顾
首先,我们回顾一些基本的Z变换公式:
-
已知L−1[1s]=1(t)L^{-1}\left[\frac{1}{s}\right] = 1(t)L−1[s1]=1(t)(单位阶跃函数),其Z变换为:
Z[1(t)]=11−z−1,∣z∣>1 Z[1(t)] = \frac{1}{1 - z^{-1}}, |z| > 1 Z[1(t)]=1−z−11,∣z∣>1 -
对于L−1[ωs2+ω2]=sin(ωt)L^{-1}\left[\frac{\omega}{s^{2} + \omega^{2}}\right] = \sin(\omega t)L−1[s2+ω2ω]=sin(ωt),其Z变换为:
Z[sin(ωt)]=zsin(ωT)z2−2zcos(ωT)+1,∣z∣>1 Z[\sin(\omega t)] = \frac{z \sin(\omega T)}{z^{2} - 2z \cos(\omega T) + 1}, |z| > 1 Z[sin(ωt)]=z2−2zcos(ωT)+1zsin(ωT),∣z∣>1
其中TTT为采样周期。 -
对于L−1[ss2+ω2]=cos(ωt)L^{-1}\left[\frac{s}{s^{2} + \omega^{2}}\right] = \cos(\omega t)L−1[s2+ω2s]=cos(ωt),其Z变换为:
Z[cos(ωt)]=z(z−cos(ωT))z2−2zcos(ωT)+1,∣z∣>1 Z[\cos(\omega t)] = \frac{z(z - \cos(\omega T))}{z^{2} - 2z \cos(\omega T) + 1}, |z| > 1 Z[cos(ωt)]=z2−2zcos(ωT)+1z(z−cos(ωT)),∣z∣>1 -
对于L−1[ω2s2+ω2]=ωsin(ωt)L^{-1}\left[\frac{\omega^{2}}{s^{2} + \omega^{2}}\right] = \omega \sin(\omega t)L−1[s2+ω2ω2]=ωsin(ωt),其Z变换为:
Z[ωsin(ωt)]=ωzsin(ωT)z2−2zcos(ωT)+1,∣z∣>1 Z[\omega \sin(\omega t)] = \frac{\omega z \sin(\omega T)}{z^{2} - 2z \cos(\omega T) + 1}, |z| > 1 Z[ωsin(ωt)]=z2−2zcos(ωT)+1ωzsin(ωT),∣z∣>1
2. 部分分式分解法处理
我们接下来采用部分分式分解法来对F(s)=1s⋅ωr2s2+ωr2F(s) = \frac{1}{s} \cdot \frac{\omega_{r}^{2}}{s^{2} + \omega_{r}^{2}}F(s)=s1⋅s2+ωr2ωr2进行处理:
-
设:
1s⋅ωr2s2+ωr2=As+Bs+Cs2+ωr2 \frac{1}{s} \cdot \frac{\omega_{r}^{2}}{s^{2} + \omega_{r}^{2}} = \frac{A}{s} + \frac{Bs + C}{s^{2} + \omega_{r}^{2}} s1⋅s2+ωr2ωr2=sA+s2+ωr2Bs+C -
通分得到:
ωr2=A(s2+ωr2)+(Bs+C)s \omega_{r}^{2} = A(s^{2} + \omega_{r}^{2}) + (Bs + C)s ωr2=A(s2+ωr2)+(Bs+C)s -
令s=0s = 0s=0,则:
ωr2=Aωr2⇒A=1 \omega_{r}^{2} = A \omega_{r}^{2} \quad \Rightarrow \quad A = 1 ωr2=Aωr2⇒A=1 -
展开:
ωr2=As2+Aωr2+Bs2+Cs \omega_{r}^{2} = A s^{2} + A \omega_{r}^{2} + Bs^{2} + Cs ωr2=As2+Aωr2+Bs2+Cs
即:
ωr2=(A+B)s2+Cs+Aωr2 \omega_{r}^{2} = (A + B) s^{2} + Cs + A \omega_{r}^{2} ωr2=(A+B)s2+Cs+Aωr2 -
因为A=1A = 1A=1,对比s2s^{2}s2的系数得到:
0=A+B⇒B=−1 0 = A + B \quad \Rightarrow \quad B = -1 0=A+B⇒B=−1 -
对比sss的系数得到:
C=0 C = 0 C=0
因此,最终结果为:
1s⋅ωr2s2+ωr2=1s−ss2+ωr2 \frac{1}{s} \cdot \frac{\omega_{r}^{2}}{s^{2} + \omega_{r}^{2}} = \frac{1}{s} - \frac{s}{s^{2} + \omega_{r}^{2}} s1⋅s2+ωr2ωr2=s1−s2+ωr2s
3. Z变换的计算
接下来,我们分别求出每一项的Z变换。
-
对于f1(t)=L−1[1s]=1(t)f_1(t) = L^{-1}\left[\frac{1}{s}\right] = 1(t)f1(t)=L−1[s1]=1(t),其Z变换为:
F1(z)=Z[1(t)]=11−z−1=zz−1,∣z∣>1 F_1(z) = Z[1(t)] = \frac{1}{1 - z^{-1}} = \frac{z}{z - 1}, |z| > 1 F1(z)=Z[1(t)]=1−z−11=z−1z,∣z∣>1 -
对于f2(t)=L−1[ss2+ωr2]=cos(ωrt)f_2(t) = L^{-1}\left[\frac{s}{s^{2} + \omega_{r}^{2}}\right] = \cos(\omega_{r} t)f2(t)=L−1[s2+ωr2s]=cos(ωrt),其Z变换为:
F2(z)=Z[cos(ωrt)]=z(z−cos(ωrT))z2−2zcos(ωrT)+1,∣z∣>1 F_2(z) = Z[\cos(\omega_{r} t)] = \frac{z(z - \cos(\omega_{r} T))}{z^{2} - 2z \cos(\omega_{r} T) + 1}, |z| > 1 F2(z)=Z[cos(ωrt)]=z2−2zcos(ωrT)+1z(z−cos(ωrT)),∣z∣>1 -
那么F(z)=Z[1s⋅ωr2s2+ωr2]=Z[1s−ss2+ωr2]F(z) = Z\left[\frac{1}{s} \cdot \frac{\omega_{r}^{2}}{s^{2} + \omega_{r}^{2}}\right] = Z\left[\frac{1}{s} - \frac{s}{s^{2} + \omega_{r}^{2}}\right]F(z)=Z[s1⋅s2+ωr2ωr2]=Z[s1−s2+ωr2s]。
根据Z变换的线性性质:
Z[af1(t)+bf2(t)]=aZ[f1(t)]+bZ[f2(t)] Z[af_1(t) + bf_2(t)] = aZ[f_1(t)] + bZ[f_2(t)] Z[af1(t)+bf2(t)]=aZ[f1(t)]+bZ[f2(t)]
这里a=1a = 1a=1,b=−1b = -1b=−1。
所以:
F(z)=zz−1−z(z−cos(ωrT))z2−2zcos(ωrT)+1 F(z) = \frac{z}{z - 1} - \frac{z(z - \cos(\omega_{r} T))}{z^{2} - 2z \cos(\omega_{r} T) + 1} F(z)=z−1z−z2−2zcos(ωrT)+1z(z−cos(ωrT))
-
通分并化简:
先将zz−1\frac{z}{z - 1}z−1z的分子分母同乘z2−2zcos(ωrT)+1z^{2} - 2z \cos(\omega_{r} T) + 1z2−2zcos(ωrT)+1,得到:
z(z2−2zcos(ωrT)+1)(z−1)(z2−2zcos(ωrT)+1) \frac{z(z^{2} - 2z \cos(\omega_{r} T) + 1)}{(z - 1)(z^{2} - 2z \cos(\omega_{r} T) + 1)} (z−1)(z2−2zcos(ωrT)+1)z(z2−2zcos(ωrT)+1)然后将z(z−cos(ωrT))z2−2zcos(ωrT)+1\frac{z(z - \cos(\omega_{r} T))}{z^{2} - 2z \cos(\omega_{r} T) + 1}z2−2zcos(ωrT)+1z(z−cos(ωrT))的分子分母同乘z−1z - 1z−1,得到:
z(z−cos(ωrT))(z−1)(z−1)(z2−2zcos(ωrT)+1) \frac{z(z - \cos(\omega_{r} T))(z - 1)}{(z - 1)(z^{2} - 2z \cos(\omega_{r} T) + 1)} (z−1)(z2−2zcos(ωrT)+1)z(z−cos(ωrT))(z−1)由此,得到:
F(z)=z(z2−2zcos(ωrT)+1)−z(z−cos(ωrT))(z−1)(z−1)(z2−2zcos(ωrT)+1) F(z) = \frac{z(z^{2} - 2z \cos(\omega_{r} T) + 1) - z(z - \cos(\omega_{r} T))(z - 1)}{(z - 1)(z^{2} - 2z \cos(\omega_{r} T) + 1)} F(z)=(z−1)(z2−2zcos(ωrT)+1)z(z2−2zcos(ωrT)+1)−z(z−cos(ωrT))(z−1) -
展开分子并化简得到:
F(z)=(1−cos(ωrT))z(z+1)(z−1)(z2−2zcos(ωrT)+1) F(z) = \frac{(1 - \cos(\omega_{r} T)) z (z + 1)}{(z - 1)(z^{2} - 2z \cos(\omega_{r} T) + 1)} F(z)=(z−1)(z2−2zcos(ωrT)+1)(1−cos(ωrT))z(z+1)
4. 结论
综上,1s⋅ωr2s2+ωr2\frac{1}{s} \cdot \frac{\omega_{r}^{2}}{s^{2} + \omega_{r}^{2}}s1⋅s2+ωr2ωr2的Z变换为:
F(z)=(1−cos(ωrT))z(z+1)(z−1)(z2−2zcos(ωrT)+1),∣z∣>1 F(z) = \frac{(1 - \cos(\omega_{r} T)) z (z + 1)}{(z - 1)(z^{2} - 2z \cos(\omega_{r} T) + 1)}, |z| > 1 F(z)=(z−1)(z2−2zcos(ωrT)+1)(1−cos(ωrT))z(z+1),∣z∣>1
其中TTT为采样周期。