Z变换与离散化过程的分析
在信号处理和控制系统中,Z变换是一种重要的工具,它可以帮助我们将连续时间的信号转化为离散时间信号,从而适用于数字控制系统的分析与设计。接下来,我们通过一个具体例子,分析如何进行Z变换以及如何处理相关的部分分式分解。
1. 基本Z变换公式回顾
首先,我们回顾一些基本的Z变换公式:
-
已知 L − 1 [ 1 s ] = 1 ( t ) L^{-1}\left[\frac{1}{s}\right] = 1(t) L−1[s1]=1(t)(单位阶跃函数),其Z变换为:
Z [ 1 ( t ) ] = 1 1 − z − 1 , ∣ z ∣ > 1 Z[1(t)] = \frac{1}{1 - z^{-1}}, |z| > 1 Z[1(t)]=1−z−11,∣z∣>1 -
对于 L − 1 [ ω s 2 + ω 2 ] = sin ( ω t ) L^{-1}\left[\frac{\omega}{s^{2} + \omega^{2}}\right] = \sin(\omega t) L−1[s2+ω2ω]=sin(ωt),其Z变换为:
Z [ sin ( ω t ) ] = z sin ( ω T ) z 2 − 2 z cos ( ω T ) + 1 , ∣ z ∣ > 1 Z[\sin(\omega t)] = \frac{z \sin(\omega T)}{z^{2} - 2z \cos(\omega T) + 1}, |z| > 1 Z[sin(ωt)]=z2−2zcos(ωT)+1zsin(ωT),∣z∣>1
其中 T T T为采样周期。 -
对于 L − 1 [ s s 2 + ω 2 ] = cos ( ω t ) L^{-1}\left[\frac{s}{s^{2} + \omega^{2}}\right] = \cos(\omega t) L−1[s2+ω2s]=cos(ωt),其Z变换为:
Z [ cos ( ω t ) ] = z ( z − cos ( ω T ) ) z 2 − 2 z cos ( ω T ) + 1 , ∣ z ∣ > 1 Z[\cos(\omega t)] = \frac{z(z - \cos(\omega T))}{z^{2} - 2z \cos(\omega T) + 1}, |z| > 1 Z[cos(ωt)]=z2−2zcos(ωT)+1z(z−cos(ωT)),∣z∣>1 -
对于 L − 1 [ ω 2 s 2 + ω 2 ] = ω sin ( ω t ) L^{-1}\left[\frac{\omega^{2}}{s^{2} + \omega^{2}}\right] = \omega \sin(\omega t) L−1[s2+ω2ω2]=ωsin(ωt),其Z变换为:
Z [ ω sin ( ω t ) ] = ω z sin ( ω T ) z 2 − 2 z cos ( ω T ) + 1 , ∣ z ∣ > 1 Z[\omega \sin(\omega t)] = \frac{\omega z \sin(\omega T)}{z^{2} - 2z \cos(\omega T) + 1}, |z| > 1 Z[ωsin(ωt)]=z2−2zcos(ωT)+1ωzsin(ωT),∣z∣>1
2. 部分分式分解法处理
我们接下来采用部分分式分解法来对 F ( s ) = 1 s ⋅ ω r 2 s 2 + ω r 2 F(s) = \frac{1}{s} \cdot \frac{\omega_{r}^{2}}{s^{2} + \omega_{r}^{2}} F(s)=s1⋅s2+ωr2ωr2进行处理:
-
设:
1 s ⋅ ω r 2 s 2 + ω r 2 = A s + B s + C s 2 + ω r 2 \frac{1}{s} \cdot \frac{\omega_{r}^{2}}{s^{2} + \omega_{r}^{2}} = \frac{A}{s} + \frac{Bs + C}{s^{2} + \omega_{r}^{2}} s1⋅s2+ωr2ωr2=sA+s2+ωr2Bs+C -
通分得到:
ω r 2 = A ( s 2 + ω r 2 ) + ( B s + C ) s \omega_{r}^{2} = A(s^{2} + \omega_{r}^{2}) + (Bs + C)s ωr2=A(s2+ωr2)+(Bs+C)s -
令 s = 0 s = 0 s=0,则:
ω r 2 = A ω r 2 ⇒ A = 1 \omega_{r}^{2} = A \omega_{r}^{2} \quad \Rightarrow \quad A = 1 ωr2=Aωr2⇒A=1 -
展开:
ω r 2 = A s 2 + A ω r 2 + B s 2 + C s \omega_{r}^{2} = A s^{2} + A \omega_{r}^{2} + Bs^{2} + Cs ωr2=As2+Aωr2+Bs2+Cs
即:
ω r 2 = ( A + B ) s 2 + C s + A ω r 2 \omega_{r}^{2} = (A + B) s^{2} + Cs + A \omega_{r}^{2} ωr2=(A+B)s2+Cs+Aωr2 -
因为 A = 1 A = 1 A=1,对比 s 2 s^{2} s2的系数得到:
0 = A + B ⇒ B = − 1 0 = A + B \quad \Rightarrow \quad B = -1 0=A+B⇒B=−1 -
对比 s s s的系数得到:
C = 0 C = 0 C=0
因此,最终结果为:
1
s
⋅
ω
r
2
s
2
+
ω
r
2
=
1
s
−
s
s
2
+
ω
r
2
\frac{1}{s} \cdot \frac{\omega_{r}^{2}}{s^{2} + \omega_{r}^{2}} = \frac{1}{s} - \frac{s}{s^{2} + \omega_{r}^{2}}
s1⋅s2+ωr2ωr2=s1−s2+ωr2s
3. Z变换的计算
接下来,我们分别求出每一项的Z变换。
-
对于 f 1 ( t ) = L − 1 [ 1 s ] = 1 ( t ) f_1(t) = L^{-1}\left[\frac{1}{s}\right] = 1(t) f1(t)=L−1[s1]=1(t),其Z变换为:
F 1 ( z ) = Z [ 1 ( t ) ] = 1 1 − z − 1 = z z − 1 , ∣ z ∣ > 1 F_1(z) = Z[1(t)] = \frac{1}{1 - z^{-1}} = \frac{z}{z - 1}, |z| > 1 F1(z)=Z[1(t)]=1−z−11=z−1z,∣z∣>1 -
对于 f 2 ( t ) = L − 1 [ s s 2 + ω r 2 ] = cos ( ω r t ) f_2(t) = L^{-1}\left[\frac{s}{s^{2} + \omega_{r}^{2}}\right] = \cos(\omega_{r} t) f2(t)=L−1[s2+ωr2s]=cos(ωrt),其Z变换为:
F 2 ( z ) = Z [ cos ( ω r t ) ] = z ( z − cos ( ω r T ) ) z 2 − 2 z cos ( ω r T ) + 1 , ∣ z ∣ > 1 F_2(z) = Z[\cos(\omega_{r} t)] = \frac{z(z - \cos(\omega_{r} T))}{z^{2} - 2z \cos(\omega_{r} T) + 1}, |z| > 1 F2(z)=Z[cos(ωrt)]=z2−2zcos(ωrT)+1z(z−cos(ωrT)),∣z∣>1 -
那么 F ( z ) = Z [ 1 s ⋅ ω r 2 s 2 + ω r 2 ] = Z [ 1 s − s s 2 + ω r 2 ] F(z) = Z\left[\frac{1}{s} \cdot \frac{\omega_{r}^{2}}{s^{2} + \omega_{r}^{2}}\right] = Z\left[\frac{1}{s} - \frac{s}{s^{2} + \omega_{r}^{2}}\right] F(z)=Z[s1⋅s2+ωr2ωr2]=Z[s1−s2+ωr2s]。
根据Z变换的线性性质:
Z
[
a
f
1
(
t
)
+
b
f
2
(
t
)
]
=
a
Z
[
f
1
(
t
)
]
+
b
Z
[
f
2
(
t
)
]
Z[af_1(t) + bf_2(t)] = aZ[f_1(t)] + bZ[f_2(t)]
Z[af1(t)+bf2(t)]=aZ[f1(t)]+bZ[f2(t)]
这里
a
=
1
a = 1
a=1,
b
=
−
1
b = -1
b=−1。
所以:
F
(
z
)
=
z
z
−
1
−
z
(
z
−
cos
(
ω
r
T
)
)
z
2
−
2
z
cos
(
ω
r
T
)
+
1
F(z) = \frac{z}{z - 1} - \frac{z(z - \cos(\omega_{r} T))}{z^{2} - 2z \cos(\omega_{r} T) + 1}
F(z)=z−1z−z2−2zcos(ωrT)+1z(z−cos(ωrT))
-
通分并化简:
先将 z z − 1 \frac{z}{z - 1} z−1z的分子分母同乘 z 2 − 2 z cos ( ω r T ) + 1 z^{2} - 2z \cos(\omega_{r} T) + 1 z2−2zcos(ωrT)+1,得到:
z ( z 2 − 2 z cos ( ω r T ) + 1 ) ( z − 1 ) ( z 2 − 2 z cos ( ω r T ) + 1 ) \frac{z(z^{2} - 2z \cos(\omega_{r} T) + 1)}{(z - 1)(z^{2} - 2z \cos(\omega_{r} T) + 1)} (z−1)(z2−2zcos(ωrT)+1)z(z2−2zcos(ωrT)+1)然后将 z ( z − cos ( ω r T ) ) z 2 − 2 z cos ( ω r T ) + 1 \frac{z(z - \cos(\omega_{r} T))}{z^{2} - 2z \cos(\omega_{r} T) + 1} z2−2zcos(ωrT)+1z(z−cos(ωrT))的分子分母同乘 z − 1 z - 1 z−1,得到:
z ( z − cos ( ω r T ) ) ( z − 1 ) ( z − 1 ) ( z 2 − 2 z cos ( ω r T ) + 1 ) \frac{z(z - \cos(\omega_{r} T))(z - 1)}{(z - 1)(z^{2} - 2z \cos(\omega_{r} T) + 1)} (z−1)(z2−2zcos(ωrT)+1)z(z−cos(ωrT))(z−1)由此,得到:
F ( z ) = z ( z 2 − 2 z cos ( ω r T ) + 1 ) − z ( z − cos ( ω r T ) ) ( z − 1 ) ( z − 1 ) ( z 2 − 2 z cos ( ω r T ) + 1 ) F(z) = \frac{z(z^{2} - 2z \cos(\omega_{r} T) + 1) - z(z - \cos(\omega_{r} T))(z - 1)}{(z - 1)(z^{2} - 2z \cos(\omega_{r} T) + 1)} F(z)=(z−1)(z2−2zcos(ωrT)+1)z(z2−2zcos(ωrT)+1)−z(z−cos(ωrT))(z−1) -
展开分子并化简得到:
F ( z ) = ( 1 − cos ( ω r T ) ) z ( z + 1 ) ( z − 1 ) ( z 2 − 2 z cos ( ω r T ) + 1 ) F(z) = \frac{(1 - \cos(\omega_{r} T)) z (z + 1)}{(z - 1)(z^{2} - 2z \cos(\omega_{r} T) + 1)} F(z)=(z−1)(z2−2zcos(ωrT)+1)(1−cos(ωrT))z(z+1)
4. 结论
综上,
1
s
⋅
ω
r
2
s
2
+
ω
r
2
\frac{1}{s} \cdot \frac{\omega_{r}^{2}}{s^{2} + \omega_{r}^{2}}
s1⋅s2+ωr2ωr2的Z变换为:
F
(
z
)
=
(
1
−
cos
(
ω
r
T
)
)
z
(
z
+
1
)
(
z
−
1
)
(
z
2
−
2
z
cos
(
ω
r
T
)
+
1
)
,
∣
z
∣
>
1
F(z) = \frac{(1 - \cos(\omega_{r} T)) z (z + 1)}{(z - 1)(z^{2} - 2z \cos(\omega_{r} T) + 1)}, |z| > 1
F(z)=(z−1)(z2−2zcos(ωrT)+1)(1−cos(ωrT))z(z+1),∣z∣>1
其中
T
T
T为采样周期。