解题思路
对于数K而言,good number的个数即为K的各个质因子的幂数累乘。但是题目给定数比较大1e24,肯定有有大于1e6的质因子,但是最多有三个。题目中又定条件,说第一大的质因子相同,第二大的一定不同,那么我们先将1e6以内的质因子分解,如果剩下的部分大于1e6的话,我们就需要再作判断,求两数的gcd,就可以将第一第二大的质因子分离,判断是否为2,3次幂可以分别求出。
代码
import java.util.*;
import java.math.*;
import java.io.*;
public class Main {
final static int maxn = 1000000;
static int cnt = 0;
static int vis[] = new int[maxn+5];
static int pri[] = new int[maxn+5];
public static void main(String args[]) {
Scanner cin = new Scanner(System.in);
Arrays.fill(vis, 0);
for (int i = 2; i <= maxn; i++) {
if (vis[i] == 1) continue;
pri[cnt++] = i;
for (int j = i + i; j <= maxn; j += i)
vis[j] = 1;
}
int cas = cin.nextInt();
BigInteger k[] = new BigInteger[3];
while (cas-- > 0) {
for (int i = 0; i < 2; i++)
k[i] = cin.nextBigInteger();
k[2] = k[0].gcd(k[1]);
long ans[] = new long[3];
for (int i = 0; i < 3; i++) {
ans[i] = 1;
for (int j = 0; j < cnt; j++) {
if (k[i].mod(BigInteger.valueOf(pri[j])).equals(BigInteger.ZERO)) {
long c = 0;
while (k[i].mod(BigInteger.valueOf(pri[j])).equals(BigInteger.ZERO)) {
k[i] = k[i].divide(BigInteger.valueOf(pri[j]));
c++;
}
ans[i] *= c;
}
}
}
if(k[2].compareTo(BigInteger.valueOf(maxn))==1) {
long n = solve(k[2]);
BigInteger g;
if (n == 1)
g = k[2];
else if (n == 2) {
g = BigInteger.valueOf((long)Math.sqrt(k[2].doubleValue()));
if (!k[2].equals(g.multiply(g)))
g = g.add(BigInteger.ONE);
} else {
g = BigInteger.valueOf((long)Math.pow(k[2].doubleValue(), 1.0/3));
if (!k[2].equals(g.multiply(g.multiply(g))));
g = g.add(BigInteger.ONE);
}
for (int i = 0; i < 2; i++) {
long c = 0;
while (k[i].mod(g).equals(BigInteger.ZERO)) {
k[i] = k[i].divide(g);
c++;
}
ans[i] *= c;
if (k[i].compareTo(BigInteger.valueOf(maxn)) == 1)
ans[i] *= solve(k[i]);
}
}
System.out.println(ans[0] + " " + ans[1]);
}
}
static long solve(BigInteger k) {
if (k.equals(BigInteger.ONE)) return 1;
BigInteger a = BigInteger.valueOf((long)Math.sqrt(k.doubleValue()));
if (k.equals(a.multiply(a))) return 2;
a = a.add(BigInteger.ONE);
if (k.equals(a.multiply(a))) return 2;
BigInteger b = BigInteger.valueOf((long)Math.pow(k.doubleValue(), 1.0/3));
if (k.equals(b.multiply(b.multiply(b)))) return 3;
b = b.add(BigInteger.ONE);
if (k.equals(b.multiply(b.multiply(b)))) return 3;
return 1;
}
}