hdu 5447 Good Numbers(数论)

博客介绍了HDU 5447 Good Numbers问题的解题思路,主要涉及数论中质因子的幂次计算。文章指出,对于大数K,其good number的数量等于其质因子的幂数乘积。由于数值范围达到1e24,可能存在超过1e6的质因子,但最多只有三个不同的质因子。解题关键在于,最大的质因子相同,第二大质因子不同。通过分解1e6以内的质因子,并对剩余部分求最大公约数(gcd),可以判断并计算最大和第二大质因子的幂次,从而解决问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目链接:hdu 5447 Good Numbers

解题思路

对于数K而言,good number的个数即为K的各个质因子的幂数累乘。但是题目给定数比较大1e24,肯定有有大于1e6的质因子,但是最多有三个。题目中又定条件,说第一大的质因子相同,第二大的一定不同,那么我们先将1e6以内的质因子分解,如果剩下的部分大于1e6的话,我们就需要再作判断,求两数的gcd,就可以将第一第二大的质因子分离,判断是否为2,3次幂可以分别求出。

代码

import java.util.*;
import java.math.*;
import java.io.*;

public class Main {
    final static int maxn = 1000000;  

    static int cnt = 0;
    static int vis[] = new int[maxn+5];
    static int pri[] = new int[maxn+5];

    public static void main(String args[]) {
        Scanner cin = new Scanner(System.in);
        Arrays.fill(vis, 0);  

        for (int i = 2; i <= maxn; i++) {
            if (vis[i] == 1) continue;
            pri[cnt++] = i;
            for (int j = i + i; j <= maxn; j += i)
                vis[j] = 1;
        }

        int cas = cin.nextInt();
        BigInteger k[] = new BigInteger[3];

        while (cas-- > 0) {
            for (int i = 0; i < 2; i++)
                k[i] = cin.nextBigInteger();

            k[2] = k[0].gcd(k[1]);
            long ans[] = new long[3];

            for (int i = 0; i < 3; i++) {
                ans[i] = 1;
                for (int j = 0; j < cnt; j++) {
                    if (k[i].mod(BigInteger.valueOf(pri[j])).equals(BigInteger.ZERO)) {
                        long c = 0;
                        while (k[i].mod(BigInteger.valueOf(pri[j])).equals(BigInteger.ZERO)) {
                            k[i] = k[i].divide(BigInteger.valueOf(pri[j]));
                            c++;
                        }
                        ans[i] *= c;
                    }
                }
            }

            if(k[2].compareTo(BigInteger.valueOf(maxn))==1) {
                long n = solve(k[2]);

                BigInteger g;
                if (n == 1)
                    g = k[2];
                else if (n == 2) {
                    g = BigInteger.valueOf((long)Math.sqrt(k[2].doubleValue()));
                    if (!k[2].equals(g.multiply(g)))
                        g = g.add(BigInteger.ONE);
                } else {
                    g = BigInteger.valueOf((long)Math.pow(k[2].doubleValue(), 1.0/3));
                    if (!k[2].equals(g.multiply(g.multiply(g))));
                    g = g.add(BigInteger.ONE);
                }

                for (int i = 0; i < 2; i++) {
                    long c = 0;
                    while (k[i].mod(g).equals(BigInteger.ZERO)) {
                        k[i] = k[i].divide(g);
                        c++;
                    }
                    ans[i] *= c;

                    if (k[i].compareTo(BigInteger.valueOf(maxn)) == 1)
                        ans[i] *= solve(k[i]);
                }
            }

            System.out.println(ans[0] + " " + ans[1]);
        }
    }

    static long solve(BigInteger k) {
        if (k.equals(BigInteger.ONE)) return 1;

        BigInteger a = BigInteger.valueOf((long)Math.sqrt(k.doubleValue()));
        if (k.equals(a.multiply(a))) return 2;
        a = a.add(BigInteger.ONE);
        if (k.equals(a.multiply(a))) return 2;

        BigInteger b = BigInteger.valueOf((long)Math.pow(k.doubleValue(), 1.0/3));
        if (k.equals(b.multiply(b.multiply(b)))) return 3;
        b = b.add(BigInteger.ONE);
        if (k.equals(b.multiply(b.multiply(b)))) return 3;

        return 1;
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值