题目大意:给出n和d,表示说有n/2对括号,要求组成深度为d的表达式,问有多少种。
解题思路:一开始想说,每增加一对括号无非是加在最前面和最后面,要不一前一后,然后就有了dp[i][j] = dp[i - 1][j] * 2 + dp[i - 1][j - 1].结果WA了。反思一下,考虑的不周全,以为括号放中间也是可以的,只要影响深度,然后参照了一下别人的题解,将表达式分成两部分,以最左边的最括号对应的右括号为分界线,然后第一部分的深度要不吵过j - 1,第二部分的深度不吵过j,dp[i][j] = ∑(j - 1≤k<i) dp[k][j - 1] * dp[i - k - 1][j],大数。
#include <stdio.h>
#include <math.h>
#include <iostream>
#include <string.h>
using namespace std;
const int M = 155;
const int N = 105;
struct bign {
int len, sex;
int s[N];
bign() {
this -> len = 1;
this -> sex = 0;
memset(s, 0, sizeof(s));
}
bign operator = (const char *number) {
int begin = 0;
len = 0;
sex = 1;
if (number[begin] == '-') {
sex = -1;
begin++;
}
else if (number[begin] == '+')
begin++;
for (int j = begin; number[j]; j++)
s[len++] = number[j] - '0';
}
bign operator = (int number) {
char string[N];
sprintf(string, "%d", number);
*this = string;
return *this;
}
bign (int number) {*this = number;}
bign (const char* number) {*this = number;}
bign change(bign cur) {
bign now;
now = cur;
for (int i = 0; i < cur.len; i++)
now.s[i] = cur.s[cur.len - i - 1];
return now;
}
void delZore() { // 删除前导0.
bign now = change(*this);
while (now.s[now.len - 1] == 0 && now.len > 1) {
now.len--;
}
*this = change(now);
}
void put() { // 输出数值。
delZore();
if (sex < 0 && (len != 1 || s[0] != 0))
cout << "-";
for (int i = 0; i < len; i++)
cout << s[i];
}
bign operator + (const bign &cur){
bign sum, a, b;
sum.len = 0;
a = a.change(*this);
b = b.change(cur);
for (int i = 0, g = 0; g || i < a.len || i < b.len; i++){
int x = g;
if (i < a.len) x += a.s[i];
if (i < b.len) x += b.s[i];
sum.s[sum.len++] = x % 10;
g = x / 10;
}
return sum.change(sum);
}
bign operator * (const bign &cur){
bign sum, a, b;
sum.len = 0;
a = a.change(*this);
b = b.change(cur);
for (int i = 0; i < a.len; i++){
int g = 0;
for (int j = 0; j < b.len; j++){
int x = a.s[i] * b.s[j] + g + sum.s[i + j];
sum.s[i + j] = x % 10;
g = x / 10;
}
sum.len = i + b.len;
while (g){
sum.s[sum.len++] = g % 10;
g = g / 10;
}
}
return sum.change(sum);
}
bign operator - (const bign &cur) {
bign sum, a, b;
sum.len = len;
a = a.change(*this);
b = b.change(cur);
for (int i = 0; i < b.len; i++) {
sum.s[i] = a.s[i] - b.s[i] + sum.s[i];
if (sum.s[i] < 0) {
sum.s[i] += 10;
sum.s[i + 1]--;
}
}
for (int i = b.len; i < a.len; i++) {
sum.s[i] += a.s[i];
if (sum.s[i] < 0) {
sum.s[i] += 10;
sum.s[i + 1]--;
}
}
return sum.change(sum);
}
};
bign dp[M][M];
void init() {
for (int i = 0; i <= 150; i++)
dp[0][i] = 1;
for (int i = 1; i <= 150; i++) {
for (int j = 1; j <= 150; j++) {
for (int k = 0; k < i; k++)
dp[i][j] = dp[k][j - 1] * dp[i - k - 1][j] + dp[i][j];
}
}
}
int main () {
init();
int n, d;
while (scanf("%d%d", &n, &d) == 2) {
if (n % 2) {
printf("0\n");
} else {
bign sum = dp[n/2][d] - dp[n/2][d - 1];
sum.put();
printf("\n");
}
}
return 0;
}