39、编程中的数学运算与代码优化

编程中的数学运算与代码优化

1. 整数除法的优化技巧

在编程中,整数除法是一个常见的操作,但直接进行除法运算可能效率不高。我们可以通过一些数学技巧将除法转换为乘法来提高效率。

1.1 除法转乘法的原理

从学校数学知识可知,除以 9 可以用乘以 1/9 来替代。在浮点数运算中,编译器有时会进行这样的替换,例如 x86 代码中的 FDIV 指令可以被 FMUL 指令替代。但在处理整数和 CPU 寄存器时,不能直接使用分数。不过,我们可以对分数进行变形:

result = x / 9 = x * 1/9 = x * (1 * MagicNumber) / (9 * MagicNumber)

由于除以 2 的 n 次方可以通过移位操作快速实现,我们需要找到一个 MagicNumber,使得 2^n = 9 * MagicNumber 。例如,在某些情况下,汇编代码会乘以 954437177 / (2^32 + 1) ,相当于除以 (2^32 + 1) / 954437177 ,使用 Wolfram Alpha 计算可得结果接近 9。

1.2 不同处理器的实现

1.2.1 ARM 处理器

ARM 处理器和其他“纯” RISC 处理器一样,没有专门的除法指令,也没有直接乘以 32 位常量的单条指令。不过,利用巧妙的技巧,可以仅使用加法、减法和位移位三条指令来实现除法。以下是一个将 32 位数除以 10 的示例

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值