题目
求∑i=1n∑j=1mgcd(i,j)h(mod1000000007)\sum_{i=1}^n\sum_{j=1}^mgcd(i,j)^h\pmod {1000000007}i=1∑nj=1∑mgcd(i,j)h(mod1000000007)
–
分析
=∑d=1ndh∑i=1n∑j=1m[gcd(i,j)==1]=\sum_{d=1}^nd^h\sum_{i=1}^n\sum_{j=1}^m[gcd(i,j)==1]=d=1∑ndhi=1∑nj=1∑m[gcd(i,j)==1]
然后就是∑d=1ndh∑i=1⌊nd⌋∑j=1⌊md⌋∑k∣i,k∣jμ(k)\sum_{d=1}^nd^h\sum_{i=1}^{\lfloor\frac{n}{d}\rfloor}\sum_{j=1}^{\lfloor\frac{m}{d}\rfloor}\sum_{k|i,k|j}\mu(k)d=1∑ndhi=1∑⌊dn⌋j=1∑⌊dm⌋k∣i,k∣j∑μ(k)
∑d=1ndh∑k=1⌊nd⌋μ(k)⌊nkd⌋⌊mkd⌋\sum_{d=1}^nd^h\sum_{k=1}^{\lfloor\frac{n}{d}\rfloor}\mu(k)\lfloor\frac{n}{kd}\rfloor\lfloor\frac{m}{kd}\rfloord=1∑ndhk=1∑⌊dn⌋μ(k)⌊kdn⌋⌊kdm⌋
枚举i=kdi=kdi=kd得到
∑i=1n⌊ni⌋⌊mi⌋∑d∣idhμ(id)\sum_{i=1}^n\lfloor\frac{n}{i}\rfloor\lfloor\frac{m}{i}\rfloor\sum_{d|i}d^h\mu(\frac{i}{d})i=1∑n⌊in⌋⌊im⌋d∣i∑dhμ(di)
预处理后面的部分,时间复杂度O(N+Tsqrt(n))O(N+Tsqrt(n))O(N+Tsqrt(n))
代码
#include <cstdio>
#include <cctype>
#define rr register
using namespace std;
const int N=5000001,mod=1000000007;
int dp[N],prime[N],cnt,T,k; bool v[N];
inline signed iut(){
rr int ans=0; rr char c=getchar();
while (!isdigit(c)) c=getchar();
while (isdigit(c)) ans=(ans<<3)+(ans<<1)+(c^48),c=getchar();
return ans;
}
inline void print(int ans){
if (ans>9) print(ans/10);
putchar(ans%10+48);
}
inline signed min(int a,int b){return a<b?a:b;}
inline signed ksm(int x,int y){
rr int ans=1;
for (;y;y>>=1,x=1ll*x*x%mod)
if (y&1) ans=1ll*ans*x%mod;
return ans;
}
inline signed mo(int x,int y){return x+y>=mod?x+y-mod:x+y;}
inline void init(){
dp[1]=1;
for (rr int i=2;i<N;++i){
if (!v[i]) prime[++cnt]=i,dp[i]=mo(ksm(i,k)-1,mod);
for (rr int j=1;prime[j]*i<N&&j<=cnt;++j){
v[i*prime[j]]=1;
if (i%prime[j]==0){
dp[i*prime[j]]=1ll*dp[i]*(dp[prime[j]]+1)%mod;
break;
}
dp[i*prime[j]]=1ll*dp[i]*dp[prime[j]]%mod;
}
}
for (rr int i=2;i<N;++i) dp[i]=mo(dp[i],dp[i-1]);
}
signed main(){
T=iut(); k=iut(); init();
while (T--){
rr int n=iut(),m=iut(),t=n<m?n:m,ans=0;
for (rr int l=1,r;l<=t;l=r+1){
r=min(n/(n/l),m/(m/l));
ans=mo(ans,1ll*(dp[r]-dp[l-1]+mod)*(n/l)%mod*(m/l)%mod);
}
print(ans),putchar(10);
}
return 0;
}