题目
给定n,mn,mn,m,求1≤x≤n1\leq x\leq n1≤x≤n,1≤y≤m1\leq y\leq m1≤y≤m满足gcd(x,y)=dgcd(x,y)=dgcd(x,y)=d的(x,y)(x,y)(x,y)个数
分析
设f(d)=∑i=1n∑j=1m[gcd(i,j)=d]f(d)=\sum_{i=1}^{n}\sum_{j=1}^{m}[gcd(i,j)=d]f(d)=i=1∑nj=1∑m[gcd(i,j)=d]
F(d)=⌊nd⌋⌊md⌋F(d)=\lfloor\frac{n}{d}\rfloor\lfloor\frac{m}{d}\rfloorF(d)=⌊dn⌋⌊dm⌋
根据莫比乌斯反演
答案=∑d∣nμ(nd)F(nd)答案=\sum_{d|n}\mu (\frac{n}{d})F(\frac{n}{d})答案=d∣n∑μ(dn)F(dn)
然后枚举nd\frac{n}{d}dn可以发现可以用整除分块解决,then
代码
#include <cstdio>
#include <vector>
#define rr register
#define N 50001
using namespace std;
int sum[N],v[N],mobius[N];
inline int in(){
rr int ans=0; rr char c=getchar();
while (c<48||c>57) c=getchar();
while (c>47&&c<58) ans=(ans<<3)+(ans<<1)+c-48,c=getchar();
return ans;
}
void print(int ans){
if (ans>9) print(ans/10);
putchar(ans%10+48);
}
void prepare(int n){
mobius[1]=1; vector<int>prime;
for (rr int i=2;i<=n;++i){
if (!v[i]) v[i]=i,mobius[i]=-1,prime.push_back(i);
for (rr int j=0;j<prime.size();++j){
if (prime[j]>v[i]||prime[j]>n/i) break;
v[i*prime[j]]=prime[j];
if (i%prime[j]==0) break;
mobius[i*prime[j]]=-mobius[i];
}
}
for (rr int i=1;i<=n;i++) sum[i]=sum[i-1]+mobius[i];//线性筛求莫比乌斯前缀和
}
int main(){
rr int t=in(); prepare(N-1);
while (t--){
rr int n=in(),m=in(),d=in();
if (n>m) n^=m,m^=n,n^=m;
rr long long ans=0;
for (rr int l=1,r;l<=n;l=r+1){//整除分块
r=min(n/(n/l),m/(m/l));
ans+=(n/l/d)*(m/l/d)*(sum[r]-sum[l-1]);//计算答案前缀和
}
print(ans); putchar(10);
}
return 0;
}