题目
设d(x)d(x)d(x)为xxx的约数个数,给定n,mn,mn,m,求 ∑i=1n∑j=1md(ij)\sum^n_{i=1}\sum^m_{j=1}d(ij)i=1∑nj=1∑md(ij)
分析
又到了推式子的过程了
ans=∑i=1n∑j=1m∑x∣i∑y∣j[gcd(x,y)=1]ans=\sum^n_{i=1}\sum^m_{j=1}\sum_{x|i}\sum_{y|j}[gcd(x,y)=1]ans=i=1∑nj=1∑mx∣i∑y∣j∑[gcd(x,y)=1]
根据莫比乌斯反演,得到
ans=∑i=1n∑j=1m∑x∣i∑y∣j∑d∣gcd(x,y)μ(d)ans=\sum^n_{i=1}\sum^m_{j=1}\sum_{x|i}\sum_{y|j}\sum_{d|gcd(x,y)}\mu(d)ans=i=1∑nj=1∑mx∣i∑y∣j∑d∣gcd(x,y)∑μ(d)
直接枚举ddd,得到
ans=∑i=1n∑j=1m∑x∣i∑y∣j∑d=1min(n,m)μ(d)∗[d∣gcd(x,y)]ans=\sum^n_{i=1}\sum^m_{j=1}\sum_{x|i}\sum_{y|j}\sum_{d=1}^{min(n,m)}\mu(d)*[d|gcd(x,y)]ans=i=1∑nj=1∑mx∣i∑y∣j∑d=1∑min(n,m)μ(d)∗[d∣gcd(x,y)]
把只有关ddd的项移出,得到
ans=∑d=1min(n,m)μ(d)∑i=1n∑j=1m∑x∣i∑y∣j[d∣gcd(x,y)]ans=\sum_{d=1}^{min(n,m)}\mu(d)\sum^n_{i=1}\sum^m_{j=1}\sum_{x|i}\sum_{y|j}[d|gcd(x,y)]ans=d=1∑min(n,m)μ(d)i=1∑nj=1∑mx∣i∑y∣j∑[d∣gcd(x,y)]
换一种方式,得到
ans=∑d=1min(n,m)μ(d)∑x=1n∑y=1m[d∣gcd(x,y)]⌊nx⌋⌊my⌋ans=\sum_{d=1}^{min(n,m)}\mu(d)\sum_{x=1}^n\sum_{y=1}^m[d|gcd(x,y)]\lfloor\frac{n}{x}\rfloor\lfloor\frac{m}{y}\rfloorans=d=1∑min(n,m)μ(d)x=1∑ny=1∑m[d∣gcd(x,y)]⌊xn⌋⌊ym⌋
枚举dx,dydx,dydx,dy,得到
ans=∑d=1min(n,m)μ(d)∑x=1⌊nd⌋∑y=1⌊md⌋⌊ndx⌋⌊mdy⌋ans=\sum_{d=1}^{min(n,m)}\mu(d)\sum_{x=1}^{\lfloor\frac{n}{d}\rfloor}\sum_{y=1}^{\lfloor\frac{m}{d}\rfloor}\lfloor\frac{n}{dx}\rfloor\lfloor\frac{m}{dy}\rfloorans=d=1∑min(n,m)μ(d)x=1∑⌊dn⌋y=1∑⌊dm⌋⌊dxn⌋⌊dym⌋
再移项,得到
ans=∑d=1min(n,m)μ(d)(∑x=1⌊nd⌋⌊ndx⌋)(∑y=1⌊md⌋⌊mdy⌋)ans=\sum_{d=1}^{min(n,m)}\mu(d)(\sum_{x=1}^{\lfloor\frac{n}{d}\rfloor}\lfloor\frac{n}{dx}\rfloor)(\sum_{y=1}^{\lfloor\frac{m}{d}\rfloor}\lfloor\frac{m}{dy}\rfloor)ans=d=1∑min(n,m)μ(d)(x=1∑⌊dn⌋⌊dxn⌋)(y=1∑⌊dm⌋⌊dym⌋)
发现可以用整除分块和线性筛完成,于是
代码
#include <cstdio>
#include <cctype>
#define rr register
using namespace std;
const int N=50000;
int mu[N+1],v[N+1],prime[N+1],cnt,sum[N+1];
inline signed iut(){
rr int ans=0; rr char c=getchar();
while (!isdigit(c)) c=getchar();
while (isdigit(c)) ans=(ans<<3)+(ans<<1)+c-48,c=getchar();
return ans;
}
inline void prepa(){
mu[1]=sum[1]=1;
for (rr int i=2;i<=N;++i){//线性筛莫比乌斯函数
if (!v[i]) mu[i]=-1,v[i]=prime[++cnt]=i;
for (rr int j=1;j<=cnt&&prime[j]*i<=N;++j){
v[i*prime[j]]=prime[j];
if (i%prime[j]) mu[i*prime[j]]=-mu[i];
else break;
}
}
for (rr int i=2;i<=N;++i){
mu[i]+=mu[i-1];
for (rr int l=1,r;l<=i;l=r+1)//整除分块
sum[i]+=((r=(i/(i/l)))-l+1)*(i/l);
}
}
inline signed min(int a,int b){return (a<b)?a:b;}
signed main(){
prepa();
rr int t=iut();
while (t--){
rr int n=iut(),m=iut();
rr int minx=min(n,m);
rr long long ans=0;
for (rr int l=1,r;l<=minx;l=r+1){
r=min(n/(n/l),m/(m/l));
ans+=(mu[r]-mu[l-1])*1ll*sum[n/l]*sum[m/l];//按照刚刚的式子求出答案
}
printf("%lld\n",ans);
}
return 0;
}