分析
然而这道题只能靠差值了,设
d
p
[
i
]
[
j
]
[
k
]
[
0
/
1
]
dp[i][j][k][0/1]
dp[i][j][k][0/1]表示当前小a和uim在(i,j),他们差值取模后为k,且当前是1/不是0小a吸魔液,也就是说
d
p
[
i
]
[
j
]
[
k
]
[
0
]
=
d
p
[
i
]
[
j
−
1
]
[
k
−
a
[
i
]
[
j
]
m
o
d
]
[
1
]
+
d
p
[
i
−
1
]
[
j
]
[
k
−
a
[
i
]
[
j
]
m
o
d
]
[
1
]
dp[i][j][k][0]=dp[i][j-1][k-a[i][j]mod][1]+dp[i-1][j][k-a[i][j]mod][1]
dp[i][j][k][0]=dp[i][j−1][k−a[i][j]mod][1]+dp[i−1][j][k−a[i][j]mod][1]
d
p
[
i
]
[
j
]
[
k
]
[
1
]
=
d
p
[
i
]
[
j
−
1
]
[
k
+
a
[
i
]
[
j
]
m
o
d
]
[
0
]
+
d
p
[
i
−
1
]
[
j
]
[
k
+
a
[
i
]
[
j
]
m
o
d
]
[
0
]
dp[i][j][k][1]=dp[i][j-1][k+a[i][j]mod][0]+dp[i-1][j][k+a[i][j]mod][0]
dp[i][j][k][1]=dp[i][j−1][k+a[i][j]mod][0]+dp[i−1][j][k+a[i][j]mod][0]
答案是
∑
i
=
1
n
∑
j
=
1
m
d
p
[
i
]
[
j
]
[
0
]
[
1
]
\sum_{i=1}^{n}\sum_{j=1}^{m}dp[i][j][0][1]
i=1∑nj=1∑mdp[i][j][0][1]
以下用滚动数组实现
代码
#include <cstdio>
#include <cctype>
#include <cstring>
#define rr register
using namespace std;
typedef unsigned uit;
const uit mod=1000000007;
uit dp[2][801][16][2],n,m,k,ans;
inline uit iut(){
rr uit ans=0; rr char c=getchar();
while (!isdigit(c)) c=getchar();
while (isdigit(c)) ans=(ans<<3)+(ans<<1)+c-48,c=getchar();
return ans;
}
int main(){
n=iut(); m=iut(); k=iut()+1;
for (rr uit i=1;i<=n;++i){
memset(dp[i&1],0,sizeof(dp[i&1]));
for (rr uit j=1;j<=m;++j){
rr uit x=iut(); dp[i&1][j][x%k][0]=1;
for (rr uit rh=0;rh<k;++rh){
dp[i&1][j][rh][0]=(dp[i&1][j][rh][0]+dp[1-(i&1)][j][(rh-x+k)%k][1]+dp[i&1][j-1][(rh-x+k)%k][1])%mod;
dp[i&1][j][rh][1]=(dp[i&1][j][rh][1]+dp[1-(i&1)][j][(rh+x)%k][0]+dp[i&1][j-1][(rh+x)%k][0])%mod;
}
ans=(ans+dp[i&1][j][0][1])%mod;
}
}
printf("%u",ans);
return 0;
}