机器学习:从患者生存预测到油泄漏分类
1. 患者生存概率预测
1.1 模型构建与预测
在患者生存概率预测中,我们首先构建模型并进行训练。以下是示例代码:
model = Pipeline(steps=steps)
model.fit(X, y)
# some survival cases
print('Survival Cases:')
data = [[31,59,2], [31,65,4], [34,60,1]]
for row in data:
# make prediction
yhat = model.predict_proba([row])
# get percentage of survival
p_survive = yhat[0, 0] * 100
# summarize
print('>data=%s, Survival=%.3f%%' % (row, p_survive))
# some non-survival cases
print('Non-Survival Cases:')
data = [[44,64,6], [34,66,9], [38,69,21]]
for row in data:
# make prediction
yhat = model.predict_proba([row])
# get percentage of survival
p_survive = yhat[0, 0] * 100
# summarize
print('>data=%s, Survival
超级会员免费看
订阅专栏 解锁全文
1063

被折叠的 条评论
为什么被折叠?



