定义
The divergence of a vector field a(x,y,z)a(x, y, z)a(x,y,z) is defined by
diva=∇⋅a=∂ax∂x+∂ay∂y+∂az∂z,div \boldsymbol{a}=\nabla \cdot \boldsymbol{a}=\frac{\partial a_x}{\partial x}+\frac{\partial a_y}{\partial y}+\frac{\partial a_z}{\partial z},diva=∇⋅a=∂x∂ax+∂y∂ay+∂z∂az,
where axa_xax, aya_yay and aza_zaz are the xxx-, yyy- and zzz- components of a\boldsymbol{a}a. Clearly, ∇⋅a\nabla \cdot \boldsymbol{a}∇⋅a is a scalar field. Any vector field a\boldsymbol{a}a for which ∇⋅a=0\nabla \cdot \boldsymbol{a}=0∇⋅a=0 is said to be solenoidal.
Examples
Example 1
Find the divergence of the vector field a=x2y2i+y2z2j+x2z2k\boldsymbol{a}=x^2y^2\boldsymbol{i}+y^2z^2\boldsymbol{j}+x^2z^2\boldsymbol{k}a=x2y2i+y2z2j+x2z2k.
Solution
From the definition, the divergence of a vector field a(x,y,z)a(x, y, z)a(x,y,z) is given by
∇⋅a=2xy2+2yz2+zx2z=2(xy2+yz2+x2z).\nabla \cdot \boldsymbol{a}=2xy^2+2yz^2+zx^2z=2(xy^2+yz^2+x^2z).∇⋅a=2xy2+2yz2+zx2z=2(xy2+yz2+x2z).
Geometrical properties
The divergence can be considered as a quantitative measure of how much a vector field diverges
(spreads out) or converges at any given point.
For example, if we consider the vector field v(x,y,z)v(x, y, z)v(x,y,z) describing the local velocity at any point in a fluid then ∇⋅v\nabla \cdot \boldsymbol{v}∇⋅v is equal to the net rate of outflow of fluid per unit volume, evaluated at a point (by letting a small volume at that point tend to zero).