Divergence(散度) of a vector field

向量场的散度是衡量其在某点发散或汇聚的数学概念,定义为各分量对坐标的偏导数之和。例如,对于向量场a=x^2y^2i+y^2z^2j+x^2z^2k,其散度为2(xy^2+yz^2+x^2z)。散度在物理学中用于描述流体的流动情况,如流体的流出率。零散度的向量场被称为无旋场。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

定义

The divergence of a vector field a(x,y,z)a(x, y, z)a(x,y,z) is defined by
diva=∇⋅a=∂ax∂x+∂ay∂y+∂az∂z,div \boldsymbol{a}=\nabla \cdot \boldsymbol{a}=\frac{\partial a_x}{\partial x}+\frac{\partial a_y}{\partial y}+\frac{\partial a_z}{\partial z},diva=a=xax+yay+zaz,
where axa_xax, aya_yay and aza_zaz are the xxx-, yyy- and zzz- components of a\boldsymbol{a}a. Clearly, ∇⋅a\nabla \cdot \boldsymbol{a}a is a scalar field. Any vector field a\boldsymbol{a}a for which ∇⋅a=0\nabla \cdot \boldsymbol{a}=0a=0 is said to be solenoidal.

Examples

Example 1

Find the divergence of the vector field a=x2y2i+y2z2j+x2z2k\boldsymbol{a}=x^2y^2\boldsymbol{i}+y^2z^2\boldsymbol{j}+x^2z^2\boldsymbol{k}a=x2y2i+y2z2j+x2z2k.

Solution

From the definition, the divergence of a vector field a(x,y,z)a(x, y, z)a(x,y,z) is given by
∇⋅a=2xy2+2yz2+zx2z=2(xy2+yz2+x2z).\nabla \cdot \boldsymbol{a}=2xy^2+2yz^2+zx^2z=2(xy^2+yz^2+x^2z).a=2xy2+2yz2+zx2z=2(xy2+yz2+x2z).

Geometrical properties

The divergence can be considered as a quantitative measure of how much a vector field diverges
(spreads out) or converges at any given point.
For example, if we consider the vector field v(x,y,z)v(x, y, z)v(x,y,z) describing the local velocity at any point in a fluid then ∇⋅v\nabla \cdot \boldsymbol{v}v is equal to the net rate of outflow of fluid per unit volume, evaluated at a point (by letting a small volume at that point tend to zero).

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

努力的老周

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值