定义
The curl of a vector field a(x,y,z)\boldsymbol{a}(x, y, z)a(x,y,z) is defined by
curla=∇×a=(∂az∂y−∂ay∂z)i+(∂ax∂z−∂az∂x)j+(∂ay∂x−∂ax∂y)k,curl \boldsymbol{a}=\nabla\times \boldsymbol{a}=(\frac{\partial a_z}{\partial y}-\frac{\partial a_y}{\partial z})\boldsymbol{i}+(\frac{\partial a_x}{\partial z}-\frac{\partial a_z}{\partial x})\boldsymbol{j}+(\frac{\partial a_y}{\partial x}-\frac{\partial a_x}{\partial y})\boldsymbol{k},curla=∇×a=(∂y∂az−∂z∂ay)i+(∂z∂ax−∂x∂az)j+(∂x∂ay−∂y∂ax)k,
where axa_xax, aya_yay and aza_zaz are the xxx-, yyy- and zzz- components of a\boldsymbol{a}a. The RHS can be written in a more memorable form as a determinant:
∇×a=∣ijk∂∂x∂∂y∂∂zaxayaz∣,\nabla\times \boldsymbol{a}=\begin{vmatrix}
\boldsymbol{i} & \boldsymbol{j} & \boldsymbol{k}\\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z}\\
a_x & a_y & a_z
\end{vmatrix},∇×a=∣∣∣∣∣∣i∂x∂axj∂y∂ayk∂z∂az∣∣∣∣∣∣,
where it is understood that, on expanding the determinant, the partial derivatives in the second row act on the components of a\boldsymbol{a}a in the third row.
Clearly, ∇×a\nabla\times \boldsymbol{a}∇×a is itself a vector field. Any vector field a\boldsymbol{a}a for which ∇×a=0\nabla\times \boldsymbol{a}=0∇×a=0 is said to be irrotational.
例子
例子 1
Find the curl of the vector field a=x2y2z2i+y2z2j+x2z2k\boldsymbol{a}=x^2y^2z^2\boldsymbol{i}+y^2z^2\boldsymbol{j}+x^2z^2\boldsymbol{k}a=x2y2z2i+y2z2j+x2z2k.
Solution
The Curl of a\boldsymbol{a}a is given by
∇×a=∣ijk∂∂x∂∂y∂∂zx2y2z2y2z2x2z2∣=−2[y2zi+(xz2−x2y2z)j+x2yz2k].\nabla\times \boldsymbol{a}=\begin{vmatrix}
\boldsymbol{i} & \boldsymbol{j} & \boldsymbol{k}\\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z}\\
x^2y^2z^2 & y^2z^2 & x^2z^2
\end{vmatrix}=-2[y^2z\boldsymbol{i}+(xz^2-x^2y^2z)\boldsymbol{j}+x^2yz^2\boldsymbol{k}].∇×a=∣∣∣∣∣∣i∂x∂x2y2z2j∂y∂y2z2k∂z∂x2z2∣∣∣∣∣∣=−2[y2zi+(xz2−x2y2z)j+x2yz2k].
Physical properties
For a vector field v(x,y,z)\boldsymbol{v}(x, y, z)v(x,y,z) describing the local velocity at any point in a fluid, ∇×v\nabla\times \boldsymbol{v}∇×v is a measure of the angular velocity of the fluid in the neighbourhood of that point. If a small paddle wheel were placed at various points in the fluid then it would tend to rotate in regions where ∇×v≠0\nabla\times \boldsymbol{v} \neq 0∇×v=0, while it would not rotate in regions where ∇×v=0\nabla\times \boldsymbol{v}=0∇×v=0.
Another insight into the physical interpretation of the curl operator is gained by considering the vector field v\boldsymbol{v}v describing the velocity at any point in a rigid body rotating about some axis with angular velocity ω\omegaω. If r\boldsymbol{r}r is the position vector of the point with respect to some origin on the axis of rotation then the velocity of the point is given by v=ω×r\boldsymbol{v}=\boldsymbol{\omega} \times \boldsymbol{r}v=ω×r. Without any loss of generality, we may take ω\boldsymbol{\omega}ω to lie along the zzz-axis of our coordinate system, so that ω=ωk\omega=\omega \boldsymbol{k}ω=ωk. The velocity field is then v=−ωyi+ωxj\boldsymbol{v}=-\omega y\boldsymbol{i}+\omega x\boldsymbol{j}v=−ωyi+ωxj. The curl of this vector field is easily found to be
∇×v=∣ijk∂∂x∂∂y∂∂z−ωyωx0∣=2ωk=2ω.\nabla\times \boldsymbol{v}=\begin{vmatrix}
\boldsymbol{i} & \boldsymbol{j} & \boldsymbol{k}\\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z}\\
-\omega y & \omega x & 0
\end{vmatrix}=2\omega \boldsymbol{k}=2\omega.∇×v=∣∣∣∣∣∣i∂x∂−ωyj∂y∂ωxk∂z∂0∣∣∣∣∣∣=2ωk=2ω.
Therefore the curl of the velocity field is a vector equal to twice the angular velocity vector of the rigid body about its axis of rotation.
旋度(curl)是向量分析中的一个概念,表示向量场的旋转特性。它通过三阶行列式计算得出,对于流体动力学中的速度场,旋度衡量了局部的旋转效应。例如,一个旋度为零的向量场是无旋的,意味着流体不发生旋转。另一方面,非零旋度表示存在旋转。此外,旋度也可用于理解刚体旋转中速度场的性质,其值等于刚体关于旋转轴的角速度的两倍。
999

被折叠的 条评论
为什么被折叠?



