Curl(旋度) of a vector field

旋度(curl)是向量分析中的一个概念,表示向量场的旋转特性。它通过三阶行列式计算得出,对于流体动力学中的速度场,旋度衡量了局部的旋转效应。例如,一个旋度为零的向量场是无旋的,意味着流体不发生旋转。另一方面,非零旋度表示存在旋转。此外,旋度也可用于理解刚体旋转中速度场的性质,其值等于刚体关于旋转轴的角速度的两倍。

定义

The curl of a vector field a(x,y,z)\boldsymbol{a}(x, y, z)a(x,y,z) is defined by
curla=∇×a=(∂az∂y−∂ay∂z)i+(∂ax∂z−∂az∂x)j+(∂ay∂x−∂ax∂y)k,curl \boldsymbol{a}=\nabla\times \boldsymbol{a}=(\frac{\partial a_z}{\partial y}-\frac{\partial a_y}{\partial z})\boldsymbol{i}+(\frac{\partial a_x}{\partial z}-\frac{\partial a_z}{\partial x})\boldsymbol{j}+(\frac{\partial a_y}{\partial x}-\frac{\partial a_x}{\partial y})\boldsymbol{k},curla=×a=(yazzay)i+(zaxxaz)j+(xayyax)k,
where axa_xax, aya_yay and aza_zaz are the xxx-, yyy- and zzz- components of a\boldsymbol{a}a. The RHS can be written in a more memorable form as a determinant:
∇×a=∣ijk∂∂x∂∂y∂∂zaxayaz∣,\nabla\times \boldsymbol{a}=\begin{vmatrix} \boldsymbol{i} & \boldsymbol{j} & \boldsymbol{k}\\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z}\\ a_x & a_y & a_z \end{vmatrix},×a=ixaxjyaykzaz,
where it is understood that, on expanding the determinant, the partial derivatives in the second row act on the components of a\boldsymbol{a}a in the third row.
Clearly, ∇×a\nabla\times \boldsymbol{a}×a is itself a vector field. Any vector field a\boldsymbol{a}a for which ∇×a=0\nabla\times \boldsymbol{a}=0×a=0 is said to be irrotational.

例子

例子 1

Find the curl of the vector field a=x2y2z2i+y2z2j+x2z2k\boldsymbol{a}=x^2y^2z^2\boldsymbol{i}+y^2z^2\boldsymbol{j}+x^2z^2\boldsymbol{k}a=x2y2z2i+y2z2j+x2z2k.

Solution

The Curl of a\boldsymbol{a}a is given by
∇×a=∣ijk∂∂x∂∂y∂∂zx2y2z2y2z2x2z2∣=−2[y2zi+(xz2−x2y2z)j+x2yz2k].\nabla\times \boldsymbol{a}=\begin{vmatrix} \boldsymbol{i} & \boldsymbol{j} & \boldsymbol{k}\\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z}\\ x^2y^2z^2 & y^2z^2 & x^2z^2 \end{vmatrix}=-2[y^2z\boldsymbol{i}+(xz^2-x^2y^2z)\boldsymbol{j}+x^2yz^2\boldsymbol{k}].×a=ixx2y2z2jyy2z2kzx2z2=2[y2zi+(xz2x2y2z)j+x2yz2k].

Physical properties

For a vector field v(x,y,z)\boldsymbol{v}(x, y, z)v(x,y,z) describing the local velocity at any point in a fluid, ∇×v\nabla\times \boldsymbol{v}×v is a measure of the angular velocity of the fluid in the neighbourhood of that point. If a small paddle wheel were placed at various points in the fluid then it would tend to rotate in regions where ∇×v≠0\nabla\times \boldsymbol{v} \neq 0×v=0, while it would not rotate in regions where ∇×v=0\nabla\times \boldsymbol{v}=0×v=0.
Another insight into the physical interpretation of the curl operator is gained by considering the vector field v\boldsymbol{v}v describing the velocity at any point in a rigid body rotating about some axis with angular velocity ω\omegaω. If r\boldsymbol{r}r is the position vector of the point with respect to some origin on the axis of rotation then the velocity of the point is given by v=ω×r\boldsymbol{v}=\boldsymbol{\omega} \times \boldsymbol{r}v=ω×r. Without any loss of generality, we may take ω\boldsymbol{\omega}ω to lie along the zzz-axis of our coordinate system, so that ω=ωk\omega=\omega \boldsymbol{k}ω=ωk. The velocity field is then v=−ωyi+ωxj\boldsymbol{v}=-\omega y\boldsymbol{i}+\omega x\boldsymbol{j}v=ωyi+ωxj. The curl of this vector field is easily found to be
∇×v=∣ijk∂∂x∂∂y∂∂z−ωyωx0∣=2ωk=2ω.\nabla\times \boldsymbol{v}=\begin{vmatrix} \boldsymbol{i} & \boldsymbol{j} & \boldsymbol{k}\\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z}\\ -\omega y & \omega x & 0 \end{vmatrix}=2\omega \boldsymbol{k}=2\omega.×v=ixωyjyωxkz0=2ωk=2ω.
Therefore the curl of the velocity field is a vector equal to twice the angular velocity vector of the rigid body about its axis of rotation.

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

努力的老周

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值