Gradient(梯度) of a scalar field

本文介绍了标量场的梯度定义及其几何性质,通过实例解释了如何计算梯度,并探讨了梯度方向与变化率之间的关系。

Definition

The gradient of a scalar field ϕ(x,y,z)\phi (x,y,z)ϕ(x,y,z) is defined by
gradϕ=∇ϕ=i∂ϕ∂x+j∂ϕ∂y+k∂ϕ∂z.grad \phi=\nabla \phi=\boldsymbol{i} \frac{\partial \phi}{\partial x}+\boldsymbol{j} \frac{\partial \phi}{\partial y}+\boldsymbol{k} \frac{\partial \phi}{\partial z}.gradϕ=ϕ=ixϕ+jyϕ+kzϕ.
Clearly, ∇ϕ\nabla \phiϕ is a vector field whose xxx-, yyy- and zzz- components are the first partial derivatives of ϕ(x,y,z)\phi (x,y,z)ϕ(x,y,z) with respect to xxx, yyy and zzz respectively. Also note that the vector field ∇ϕ\nabla \phiϕ should not be confused with the vector operator ϕ∇\phi \nablaϕ, which has components (ϕ∂/∂x,ϕ∂/∂y,ϕ∂/∂z)(\phi\partial/\partial x, \phi\partial/\partial y, \phi\partial/\partial z)(ϕ/x,ϕ/y,ϕ/z).

Examples

Example 1

Find the gradient of the scalar field ϕ=xy2z3\phi=xy^{2}z^{3}ϕ=xy2z3.

Solution

From the definition, the gradient of ϕ\phiϕ is given by
∇ϕ=i∂ϕ∂x+j∂ϕ∂y+k∂ϕ∂z=y2z3i+2xyz3j+3xy2z2k.\nabla \phi=\boldsymbol{i} \frac{\partial \phi}{\partial x}+\boldsymbol{j} \frac{\partial \phi}{\partial y}+\boldsymbol{k} \frac{\partial \phi}{\partial z}\\ =y^{2}z^{3}\boldsymbol{i}+2xyz^{3}\boldsymbol{j}+3xy^2z^2\boldsymbol{k}.ϕ=ixϕ+jyϕ+kzϕ=y2z3i+2xyz3j+3xy2z2k.

Geometrical properties

The gradient of a scalar field ϕ\phiϕ has some interesting geometrical properties.
Let us first consider the problem of calculating the rate of change of ϕ\phiϕ in some particular direction. For an infinitesimal vector displacement drd\boldsymbol{r}dr, forming its scalar product with ∇ϕ\nabla \phiϕ we obtain
∇ϕ⋅dr=(i∂ϕ∂x+j∂ϕ∂y+k∂ϕ∂z)⋅(idx+jdy+kdz)=∂ϕ∂xdx+∂ϕ∂ydy+∂ϕ∂zdz=dϕ,\nabla \phi \cdot d\boldsymbol{r}=(\boldsymbol{i} \frac{\partial \phi}{\partial x}+\boldsymbol{j} \frac{\partial \phi}{\partial y}+\boldsymbol{k} \frac{\partial \phi}{\partial z}) \cdot (\boldsymbol{i}dx+\boldsymbol{j}dy+\boldsymbol{k}dz)\\ =\frac{\partial \phi}{\partial x}dx+\frac{\partial \phi}{\partial y}dy+\frac{\partial \phi}{\partial z}dz\\ =d\phi,ϕdr=(ixϕ+jyϕ+kzϕ)(idx+jdy+kdz)=xϕdx+yϕdy+zϕdz=dϕ,
which is the infinitesimal change in ϕ\phiϕ in going from position r\boldsymbol{r}r to r+dr\boldsymbol{r}+d\boldsymbol{r}r+dr. In particular, if r\boldsymbol{r}r depends on some parameter uuu such that r(u)\boldsymbol{r}(u)r(u) defines a space curve then the total derivative of ϕ\phiϕ with respect to uuu along the curve is simply
dϕdu=∇ϕ⋅drdu.\frac{d\phi}{du}=\nabla \phi \cdot \frac{d\boldsymbol{r}}{du}.dudϕ=ϕdudr.

In the particular case where the parameter uuu is the arc length s along the curve, the total derivative of ϕ\phiϕ with respect to s along the curve is given by
dϕds=∇ϕ⋅t^,\frac{d\phi}{ds}=\nabla \phi \cdot \hat{\boldsymbol{t}},dsdϕ=ϕt^,
where t^\hat{\boldsymbol{t}}t^ is the unit tangent to the curve at the given point.
In general, the rate of change of ϕ\phiϕ with respect to the distance s in a particular direction a\boldsymbol{a}a is given by
dϕds=∇ϕ⋅a^\frac{d\phi}{ds}=\nabla \phi \cdot \hat{\boldsymbol{a}}dsdϕ=ϕa^
and is called the directional derivative. Since a^\hat{\boldsymbol{a}}a^ is a unit vector we have
dϕds=∣∇ϕ∣cosθ\frac{d\phi}{ds}=\lvert \nabla \phi \rvert cos\theta dsdϕ=ϕcosθ
where θ\thetaθ is the angle between a^\hat{\boldsymbol{a}}a^ and ∇ϕ\nabla \phiϕ as shown in figure below. Clearly ∇ϕ\nabla \phiϕ lies in the direction of the fastest increase in ϕ\phiϕ, and ∣∇ϕ∣\lvert \nabla \phi \rvertϕ is the largest possible value of dϕ/dsd\phi/dsdϕ/ds. Similarly, the largest rate of decrease of ϕ\phiϕ is dϕ/ds=−∣∇ϕ∣d\phi/ds=-\lvert \nabla \phi \rvertdϕ/ds=ϕ in the direction of −∇ϕ-\nabla \phiϕ.
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

努力的老周

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值