Definition
The gradient of a scalar field ϕ(x,y,z)\phi (x,y,z)ϕ(x,y,z) is defined by
gradϕ=∇ϕ=i∂ϕ∂x+j∂ϕ∂y+k∂ϕ∂z.grad \phi=\nabla \phi=\boldsymbol{i} \frac{\partial \phi}{\partial x}+\boldsymbol{j} \frac{\partial \phi}{\partial y}+\boldsymbol{k} \frac{\partial \phi}{\partial z}.gradϕ=∇ϕ=i∂x∂ϕ+j∂y∂ϕ+k∂z∂ϕ.
Clearly, ∇ϕ\nabla \phi∇ϕ is a vector field whose xxx-, yyy- and zzz- components are the first partial derivatives of ϕ(x,y,z)\phi (x,y,z)ϕ(x,y,z) with respect to xxx, yyy and zzz respectively. Also note that the vector field ∇ϕ\nabla \phi∇ϕ should not be confused with the vector operator ϕ∇\phi \nablaϕ∇, which has components (ϕ∂/∂x,ϕ∂/∂y,ϕ∂/∂z)(\phi\partial/\partial x, \phi\partial/\partial y, \phi\partial/\partial z)(ϕ∂/∂x,ϕ∂/∂y,ϕ∂/∂z).
Examples
Example 1
Find the gradient of the scalar field ϕ=xy2z3\phi=xy^{2}z^{3}ϕ=xy2z3.
Solution
From the definition, the gradient of ϕ\phiϕ is given by
∇ϕ=i∂ϕ∂x+j∂ϕ∂y+k∂ϕ∂z=y2z3i+2xyz3j+3xy2z2k.\nabla \phi=\boldsymbol{i} \frac{\partial \phi}{\partial x}+\boldsymbol{j} \frac{\partial \phi}{\partial y}+\boldsymbol{k} \frac{\partial \phi}{\partial z}\\
=y^{2}z^{3}\boldsymbol{i}+2xyz^{3}\boldsymbol{j}+3xy^2z^2\boldsymbol{k}.∇ϕ=i∂x∂ϕ+j∂y∂ϕ+k∂z∂ϕ=y2z3i+2xyz3j+3xy2z2k.
Geometrical properties
The gradient of a scalar field ϕ\phiϕ has some interesting geometrical properties.
Let us first consider the problem of calculating the rate of change of ϕ\phiϕ in some particular direction. For an infinitesimal vector displacement drd\boldsymbol{r}dr, forming its scalar product with ∇ϕ\nabla \phi∇ϕ we obtain
∇ϕ⋅dr=(i∂ϕ∂x+j∂ϕ∂y+k∂ϕ∂z)⋅(idx+jdy+kdz)=∂ϕ∂xdx+∂ϕ∂ydy+∂ϕ∂zdz=dϕ,\nabla \phi \cdot d\boldsymbol{r}=(\boldsymbol{i} \frac{\partial \phi}{\partial x}+\boldsymbol{j} \frac{\partial \phi}{\partial y}+\boldsymbol{k} \frac{\partial \phi}{\partial z}) \cdot (\boldsymbol{i}dx+\boldsymbol{j}dy+\boldsymbol{k}dz)\\
=\frac{\partial \phi}{\partial x}dx+\frac{\partial \phi}{\partial y}dy+\frac{\partial \phi}{\partial z}dz\\
=d\phi,∇ϕ⋅dr=(i∂x∂ϕ+j∂y∂ϕ+k∂z∂ϕ)⋅(idx+jdy+kdz)=∂x∂ϕdx+∂y∂ϕdy+∂z∂ϕdz=dϕ,
which is the infinitesimal change in ϕ\phiϕ in going from position r\boldsymbol{r}r to r+dr\boldsymbol{r}+d\boldsymbol{r}r+dr. In particular, if r\boldsymbol{r}r depends on some parameter uuu such that r(u)\boldsymbol{r}(u)r(u) defines a space curve then the total derivative of ϕ\phiϕ with respect to uuu along the curve is simply
dϕdu=∇ϕ⋅drdu.\frac{d\phi}{du}=\nabla \phi \cdot \frac{d\boldsymbol{r}}{du}.dudϕ=∇ϕ⋅dudr.
In the particular case where the parameter uuu is the arc length s along the curve, the total derivative of ϕ\phiϕ with respect to s along the curve is given by
dϕds=∇ϕ⋅t^,\frac{d\phi}{ds}=\nabla \phi \cdot \hat{\boldsymbol{t}},dsdϕ=∇ϕ⋅t^,
where t^\hat{\boldsymbol{t}}t^ is the unit tangent to the curve at the given point.
In general, the rate of change of ϕ\phiϕ with respect to the distance s in a particular direction a\boldsymbol{a}a is given by
dϕds=∇ϕ⋅a^\frac{d\phi}{ds}=\nabla \phi \cdot \hat{\boldsymbol{a}}dsdϕ=∇ϕ⋅a^
and is called the directional derivative. Since a^\hat{\boldsymbol{a}}a^ is a unit vector we have
dϕds=∣∇ϕ∣cosθ\frac{d\phi}{ds}=\lvert \nabla \phi \rvert cos\theta dsdϕ=∣∇ϕ∣cosθ
where θ\thetaθ is the angle between a^\hat{\boldsymbol{a}}a^ and ∇ϕ\nabla \phi∇ϕ as shown in figure below. Clearly ∇ϕ\nabla \phi∇ϕ lies in the direction of the fastest increase in ϕ\phiϕ, and ∣∇ϕ∣\lvert \nabla \phi \rvert∣∇ϕ∣ is the largest possible value of dϕ/dsd\phi/dsdϕ/ds. Similarly, the largest rate of decrease of ϕ\phiϕ is dϕ/ds=−∣∇ϕ∣d\phi/ds=-\lvert \nabla \phi \rvertdϕ/ds=−∣∇ϕ∣ in the direction of −∇ϕ-\nabla \phi−∇ϕ.

本文介绍了标量场的梯度定义及其几何性质,通过实例解释了如何计算梯度,并探讨了梯度方向与变化率之间的关系。
606

被折叠的 条评论
为什么被折叠?



