Label
莫比乌斯反演/容斥+Möbius函数
Description
给定QQQ组询问,对于每组询问,求
∑i=ab∑j=cd[gcd(x,y)==k](1≤Q,a,b,c,d,k≤5×105)\sum_{i=a}^{b}\sum_{j=c}^{d}[gcd(x,y)==k](1\le Q,a,b,c,d,k\le 5\times 10^5)i=a∑bj=c∑d[gcd(x,y)==k](1≤Q,a,b,c,d,k≤5×105)
Solution
根据常规套路,一般将gcd(i,j)==kgcd(i,j)==kgcd(i,j)==k转化为gcd(ik,jk)==1gcd(\frac{i}{k},\frac{j}{k})==1gcd(ki,kj)==1:
∑i=ab∑j=cd[gcd(i,j)==k]=∑i=⌈ak⌉⌊bk⌋∑j=⌈ck⌉⌊dk⌋[gcd(i,j)==1]\sum_{i=a}^{b}\sum_{j=c}^{d}[gcd(i,j)==k]=\sum_{i=\lceil\frac{a}{k}\rceil}^{\lfloor\frac{b}{k}\rfloor}\sum_{j=\lceil\frac{c}{k}\rceil}^{\lfloor\frac{d}{k}\rfloor}[gcd(i,j)==1]i=a∑bj=c∑d[gcd(i,j)==k]=i=⌈ka⌉∑⌊kb⌋j=⌈kc⌉∑⌊kd⌋[gcd(i,j)==1]
考虑利用容斥将上述求和式的下界转化为111:将iii与jjj的取值范围看作两个约束条件,全集大小为∑i=1⌊bk⌋∑j=1⌊dk⌋[gcd(i,j)==1]\sum_{i=1}^{\lfloor\frac{b}{k}\rfloor}\sum_{j=1}^{\lfloor\frac{d}{k}\rfloor}[gcd(i,j)==1]∑i=1⌊kb⌋∑j=1⌊kd⌋[gcd(i,j)==1],根据容斥原理的差集的变式可得:
∑i=⌈ak⌉⌊bk⌋∑j=⌈ck⌉⌊dk⌋[gcd(i,j)==1]=∑i=1⌊bk⌋∑j=1⌊dk⌋[gcd(i,j)==1]−∑i=1⌈ak⌉−1∑j=1⌊dk⌋[gcd(i,j)==1]\sum_{i=\lceil\frac{a}{k}\rceil}^{\lfloor\frac{b}{k}\rfloor}\sum_{j=\lceil\frac{c}{k}\rceil}^{\lfloor\frac{d}{k}\rfloor}[gcd(i,j)==1]=\sum_{i=1}^{\lfloor\frac{b}{k}\rfloor}\sum_{j=1}^{\lfloor\frac{d}{k}\rfloor}[gcd(i,j)==1]-\sum_{i=1}^{\lceil\frac{a}{k}\rceil-1}\sum_{j=1}^{\lfloor\frac{d}{k}\rfloor}[gcd(i,j)==1]∑i=⌈ka⌉⌊kb⌋∑j=⌈kc⌉⌊kd⌋[gcd(i,j)==1]=∑i=1⌊kb⌋∑j=1⌊kd⌋[gcd(i,j)==1]−∑i=1⌈ka⌉−1∑j=1⌊kd⌋[gcd(i,j)==1]
−∑i=1⌊bk⌋∑j=1⌈ck⌉−1[gcd(i,j)==1]+∑i=1⌈ak⌉−1∑j=1⌈ck⌉−1[gcd(i,j)==1]-\sum_{i=1}^{\lfloor\frac{b}{k}\rfloor}\sum_{j=1}^{\lceil\frac{c}{k}\rceil-1}[gcd(i,j)==1]+\sum_{i=1}^{\lceil\frac{a}{k}\rceil-1}\sum_{j=1}^{\lceil\frac{c}{k}\rceil-1}[gcd(i,j)==1]−∑i=1⌊kb⌋∑j=1⌈kc⌉−1[gcd(i,j)==1]+∑i=1⌈ka⌉−1∑j=1⌈kc⌉−1[gcd(i,j)==1]
这样一来,问题转化为求∑i=1n∑j=1m[gcd(i,j)==1]\sum_{i=1}^{n}\sum_{j=1}^{m}[gcd(i,j)==1]∑i=1n∑j=1m[gcd(i,j)==1]
法一(Möbius反演):
考虑公式ε(n)=[n==1]=∑d∣nμ(d)\varepsilon(n)=[n==1]=\sum_{d|n}\mu(d)ε(n)=[n==1]=∑d∣nμ(d)且d∣gcd(i,j)d|gcd(i,j)d∣gcd(i,j)等价于d∣i∧d∣jd|i\wedge d|jd∣i∧d∣j,则有:
∑i=1n∑j=1m[gcd(i,j)==1]\sum_{i=1}^{n}\sum_{j=1}^{m}[gcd(i,j)==1]i=1∑nj=1∑m[gcd(i,j)==1]
=∑i=1n∑j=1m∑d∣gcd(i,j)μ(d)=\sum_{i=1}^{n}\sum_{j=1}^{m}\sum_{d|gcd(i,j)}\mu(d)=i=1∑nj=1∑md∣gcd(i,j)∑μ(d)
=∑d=1min(n,m)μ(d)∑i=1n[d∣i]∑j=1m[d∣j]=\sum_{d=1}^{min(n,m)}\mu(d)\sum_{i=1}^{n}[d|i]\sum_{j=1}^{m}[d|j]=d=1∑min(n,m)μ(d)i=1∑n[d∣i]j=1∑m[d∣j]
=∑d=1min(n,m)μ(d)⌊nd⌋⌊md⌋=\sum_{d=1}^{min(n,m)}\mu(d)\lfloor\frac{n}{d}\rfloor\lfloor\frac{m}{d}\rfloor=d=1∑min(n,m)μ(d)⌊dn⌋⌊dm⌋
时间复杂度O(Qn)O(Q\sqrt n)O(Qn)
法二:容斥+Möbius函数
此处转化为与P3455一模一样的问题,推导出的式子与反演推得的答案式一致。
Code
#include<cstdio>
#include<iostream>
#define ri register int
#define ll long long
using namespace std;
const int MAXN=5e4;
int Q,cnt;
ll A,B,C,D,d,miu[MAXN+20],prime[MAXN+20],sum[MAXN+20];
bool notprime[MAXN+20];
void Mobius()
{
miu[1]=1,notprime[1]=true;
for(ri i=2;i<=MAXN;++i)
{
if(!notprime[i]) prime[++cnt]=i,miu[i]=-1;
for(ri j=1;j<=cnt&&i*prime[j]<=MAXN;++j)
{
notprime[i*prime[j]]=true;
if(i%prime[j]==0) break;
else miu[i*prime[j]]=-miu[i];
}
}
for(ri i=1;i<=MAXN;++i) sum[i]=sum[i-1]+miu[i];
}
ll Qsum(ll ai,ll bi)
{
ll ans=0LL;
ll l=1,r,sj=min(ai,bi);
while(l<=sj)
{
r=min(ai/(ai/l),bi/(bi/l));
ans+=(sum[r]-sum[l-1])*(ai/l)*(bi/l);
l=r+1;
}
return ans;
}
int main()
{
std::ios::sync_with_stdio(false);
Mobius();
cin>>Q;
for(ri op=1;op<=Q;++op)
{
cin>>A>>B>>C>>D>>d;
B/=d,D/=d;//注意:下界上取整以避免答案过大
if(A%d>0) A=A/d+1;
else A/=d;
if(C%d>0) C=C/d+1;
else C/=d;
cout<<Qsum(B,D)-Qsum(A-1,D)-Qsum(B,C-1)+Qsum(A-1,C-1)<<'\n';
}
return 0;
}