针对旁道分析攻击的PRESENT加密掩码方案
1. 引言
在加密系统中,旁道分析攻击是一种常见的威胁,它通过分析加密过程中的物理信息(如功耗、电磁辐射等)来获取密钥信息。为了抵御这类攻击,掩码技术是一种有效的方法。本文将介绍两种针对PRESENT加密算法的布尔掩码方案,并通过实验验证其有效性。
2. 相关概念
在介绍掩码方案之前,我们需要了解商组(Quotient group)和余数组(Remainder group)的概念。在PRESENT加密算法的第i轮中,S盒可以按照以下两种方式分组:
- 商组:$Q_j^i := {SB_{4j}^i, SB_{4j + 1}^i, SB_{4j + 2}^i, SB_{4j + 3}^i}$,其中$j = 0, 1, 2, 3$。
- 余数组:$R_j^i := {SB_j^i, SB_{j + 4}^i, SB_{j + 8}^i, SB_{j + 12}^i}$,其中$j = 0, 1, 2, 3$。
这种分组方式使得第i轮中每个S盒输出的比特与第$i + 1$轮中每个S盒输入的比特通过pLayer操作建立了特定的关系,具体如下表所示:
| $R_j^{i+1}$ \ $Q_j^i$ | $SB_{4j}^i$ | $SB_{4j + 1}^i$ | $SB_{4j + 2}^i$ | $SB_{4j + 3}^i$ |
|---|---|---|---|---|
| $SB_{j |
超级会员免费看
订阅专栏 解锁全文
29

被折叠的 条评论
为什么被折叠?



