【LuoguP3327】约数个数和

该博客主要介绍了LuoguP3327题目的解决方案,涉及数学概念d(x)——x的约数个数,并给出求解公式d(ij)=∑ki|i∑jl|jgcd(k,l)=1。文章指出在解决过程中,不能直接递推求解,而需要使用筛选方法来计算n内所有数的约数个数的和,利用约数个数的积性函数性质进行筛法计算。" 85232679,7760858,Linux系统中crontab定时任务的安装与配置详解,"['Linux', '系统管理', '定时任务', 'crontab']

题目链接

题目描述

d(x)xN,M,Ni=1Mj=1d(ij) 设 d ( x ) 为 x 的 约 数 个 数 , 给 定 N , M , 求 ∑ i = 1 N ∑ j = 1 M d ( i j )
d(x)x 其 中 d ( x ) 表 示 x 的 约 数 个 数

题解

首先要知道如下结论:
d(ij)=ik|ijl|jgcd(k,l)=1 d ( i j ) = ∑ k | i i ∑ l | j j g c d ( k , l ) = 1

然后开始随便推式子:
原式化为

### 计算一个整数的约数个数及所有约数 要计算一个整数的约数个数及其所有约数,可以采用两种不同的方法:**暴力枚举法****质因数分解法**。后者在处理大整数时效率更高。 #### 暴力枚举法 对于一个正整数 $ n $,可以通过遍历从 1 到 $ \sqrt{n} $ 的所有整数来判断是否是其约数。 - **约数个数**:每找到一个小于 $ \sqrt{n} $ 的因数 $ i $,若 $ i \neq n/i $,则 $ n $ 同时具有 $ i $ $ n/i $ 两个因数,因此每次找到因数时可以将计数加 2;若 $ i = n/i $,则只加 1。 - **约数**:同理,每次找到因数时,将 $ i $ $ n/i $(如果不同)加入总中。 ```c #include <stdio.h> #include <math.h> int main() { int n, i, count = 0, sum = 0; printf("请输入一个整数:"); scanf("%d", &n); for (i = 1; i <= sqrt(n); i++) { if (n % i == 0) { if (i == n / i) { count += 1; sum += i; } else { count += 2; sum += i + n / i; } } } printf("约数个数:%d\n", count); printf("约数:%d\n", sum); return 0; } ``` 该方法适用于较小的整数,时间复杂度为 $ O(\sqrt{n}) $。 #### 质因数分解法 若已知整数 $ n $ 的质因数分解为: $$ n = p_1^{a_1} \cdot p_2^{a_2} \cdot \ldots \cdot p_k^{a_k} $$ 则: - **约数个数**:$$ \text{count} = (a_1 + 1)(a_2 + 1)\ldots(a_k + 1) $$ - **约数**:$$ \text{sum} = (1 + p_1 + p_1^2 + \ldots + p_1^{a_1})(1 + p_2 + p_2^2 + \ldots + p_2^{a_2})\ldots(1 + p_k + p_k^2 + \ldots + p_k^{a_k}) $$ 例如,对于 $ n = 20 = 2^2 \cdot 5^1 $,其约数个数为 $ (2+1)(1+1) = 6 $,约数为 $ (1+2+4)(1+5) = 7 \cdot 6 = 42 $ [^2]。 该方法适用于已知质因数分解的场景,计算效率更高。 #### 示例:质因数分解后计算 ```python def divisor_count_and_sum(n): count = 1 sum_divisors = 1 i = 2 while i * i <= n: exponent = 0 while n % i == 0: n //= i exponent += 1 count *= (exponent + 1) sum_powers = 0 for j in range(exponent + 1): sum_powers += i ** j sum_divisors *= sum_powers i += 1 if n > 1: count *= 2 sum_divisors *= (1 + n) return count, sum_divisors # 示例 print(divisor_count_and_sum(20)) # 输出:(6, 42) ``` ###
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值