Open3D ROR滤波:点云数据处理的优化方法

74 篇文章 ¥59.90 ¥99.00
本文介绍了Open3D库中的ROR滤波算法,这是一种用于点云数据处理的离群点去除方法。通过设定阈值和随机采样,ROR滤波能够有效优化点云数据,提高数据质量。虽然简单高效,但在噪声大或密度变化大的场景下可能受限。结合其他滤波算法可进一步提升效果。

点云数据处理在计算机视觉和机器人领域中扮演着重要的角色。而Open3D作为一款强大的开源库,提供了许多用于点云数据处理的功能。其中,ROR(Randomized Outlier Removal)滤波算法是一种经典的离群点去除方法,本文将介绍如何使用Open3D中的ROR滤波算法对点云数据进行优化处理。

ROR滤波算法的原理是随机采样并移除异常值。它通过设定指定的阈值来判断点是否为异常值,然后随机采样点云中的一部分点,并将超出阈值的点从样本中移除。具体步骤如下:

  1. 导入所需的库和模块
import open3d as o3d
  1. 读取点云数据
pcd = o3d.io.read_point_cloud("point_cloud.pcd")
#include <iostream> //标准输入输出头文件 #include <pcl/point_types.h> //类型定义头文件 #include <pcl/io/ply_io.h> //I/O操作头文件 #include <pcl/io/pcd_io.h> //I/O操作头文件 #include <pcl/visualization/pcl_visualizer.h> #include <pcl/sample_consensus/ransac.h> #include <pcl/sample_consensus/sac_model_line.h> #include <ctime> #include <pcl/filters/passthrough.h> #include <pcl/filters/voxel_grid.h> #include <pcl/filters/statistical_outlier_removal.h> #include <pcl/filters/radius_outlier_removal.h> #include <pcl/registration/icp.h> //ICP配准类相关头文件 #include <Eigen/src/Core/util/Macros.h> #include <pcl/pcl_macros.h> #include <pcl/common/transforms.h> #include <Eigen/Geometry> #include <pcl/kdtree/kdtree_flann.h> #include <pcl/features/normal_3d_omp.h> #include <boost/thread/thread.hpp> #include <algorithm> // 包含std::sort #include <pcl/surface/mls.h> #include <vector> #include <pcl/io/obj_io.h> #include <pcl/filters/convolution_3d.h> #include <pcl/filters/median_filter.h> #include <pcl/filters/random_sample.h> #include <pcl/point_cloud.h> #include <pcl/features/normal_3d.h> #include <pcl/features/fpfh.h> #include <pcl/registration/ia_ransac.h> #include <thread> #include <pcl/registration/ndt.h> #include <pcl/segmentation/extract_clusters.h> #include <pcl/kdtree/kdtree.h> #include <pcl/common/centroid.h> #include <pcl/common/common.h> #include <pcl/sample_consensus/sac_model_circle.h> #include <pcl/filters/extract_indices.h> #include <pcl/surface/convex_hull.h> #include <cmath> #include <memory> #include < pcl/sample_consensus/sac_model_circle3d.h> #include <pcl/segmentation/sac_segmentation.h> #include <pcl/common/geometry.h> #include <pcl/features/boundary.h> // 边界估计头文件 #include <pcl/filters/project_inliers.h> #include <Eigen/Dense> #include <pcl/sample_consensus/method_types.h> #include <pcl/sample_consensus/model_types.h> #include <pcl/visualization/cloud_viewer.h> #include <pcl/filters/crop_box.h> #include <pcl/search/kdtree.h> #include <string> #include <cstdlib> #include <pcl/registration/gicp.h> #include <pcl/console/time.h> #include <pcl/registration/icp_nl.h> // 注意:这里包含的是非线性ICP(使用LM)的头文件 #include <pcl/filters/approximate_voxel_grid.h> #include <omp.h> #include <chrono> #include <pcl/octree/octree_search.h> #include <pcl/features/impl/normal_3d_omp.hpp> #include "fast_gicp.hpp" #include <open3d/Open3D.h> #include <iomanip> // 添加这个头文件用于 std::setprecision #include <random> // 添加这个头文件用于随机数生成 using namespace std; typedef pcl::PointXYZ PointT; typedef pcl::PointCloud<PointT> PointCloudT; // /********************用于面ICP配准****************//////////// //void cloudNormal(pcl::PointCloud<pcl::PointXYZ>::Ptr& cloud, pcl::PointCloud<pcl::PointNormal>::Ptr& cloud_normals) //{ // pcl::NormalEstimationOMP<pcl::PointXYZ, pcl::Normal> n;//OMP加速 // pcl::PointCloud<pcl::Normal>::Ptr normals(new pcl::PointCloud<pcl::Normal>); // pcl::search::KdTree<pcl::PointXYZ>::Ptr tree(new pcl::search::KdTree<pcl::PointXYZ>()); // n.setNumberOfThreads(8);//含义:设置OpenMP使用的线程数。这里设置为8个线程,用于加速法线估计计算。通常设置为可用CPU核心数。注意:如果系统不支持OpenMP或核心数不足,实际线程数可能受限。 // n.setInputCloud(cloud); // n.setSearchMethod(tree); // n.setKSearch(10); //设置法线估计时使用的最近邻数量(k近邻搜索)。此方法指定每个的法线基于其最近的k个邻居计算得到。 // n.compute(*normals); // pcl::concatenateFields(*cloud, *normals, *cloud_normals); // 拼接点云及法向量 //} // /********************创建带文字标签的自定义坐标轴****************//////////// void addCoordinateSystemWithLabels( pcl::visualization::PCLVisualizer::Ptr viewer, float axis_length, // 坐标轴长度 float line_width, // 线宽(粗细) float text_scale, // 文字大小 const std::string& id_prefix = "axis_", float origin_x = 0.0f, float origin_y = 0.0f, float origin_z = 0.0f ) { // X轴(红色) pcl::PointXYZ x_start(origin_x, origin_y, origin_z); pcl::PointXYZ x_end(origin_x + axis_length, origin_y, origin_z); viewer->addLine(x_start, x_end, 1.0, 0.0, 0.0, id_prefix + "x_line"); viewer->setShapeRenderingProperties(pcl::visualization::PCL_VISUALIZER_LINE_WIDTH, line_width, id_prefix + "x_line"); // 添加X标签 viewer->addText3D("X", x_end, text_scale, 1.0, 0.0, 0.0, id_prefix + "x_label"); // Y轴(绿色) pcl::PointXYZ y_start(origin_x, origin_y, origin_z); pcl::PointXYZ y_end(origin_x, origin_y + axis_length, origin_z); viewer->addLine(y_start, y_end, 0.0, 1.0, 0.0, id_prefix + "y_line"); viewer->setShapeRenderingProperties(pcl::visualization::PCL_VISUALIZER_LINE_WIDTH, line_width, id_prefix + "y_line"); // 添加Y标签 viewer->addText3D("Y", y_end, text_scale, 0.0, 1.0, 0.0, id_prefix + "y_label"); // Z轴(蓝色) pcl::PointXYZ z_start(origin_x, origin_y, origin_z); pcl::PointXYZ z_end(origin_x, origin_y, origin_z + axis_length); viewer->addLine(z_start, z_end, 0.0, 0.0, 1.0, id_prefix + "z_line"); viewer->setShapeRenderingProperties(pcl::visualization::PCL_VISUALIZER_LINE_WIDTH, line_width, id_prefix + "z_line"); // 添加Z标签 viewer->addText3D("Z", z_end, text_scale, 0.0, 0.0, 1.0, id_prefix + "z_label"); } // 提前声明估算点云平均间距的辅助函数 double estimatePointSpacing(const std::shared_ptr<open3d::geometry::PointCloud>& cloud, int num_samples = 1000); // 半径滤波函数 void radiusFilterDemo(const std::string& source_file, const std::string& target_file) { std::cout << "=== Open3D 半径滤波性能测试 ===" << std::endl; // 参数设置 const int min_neighbors = 40; // 最小邻居数 const double radius = 1.2; // 搜索半径 // 处理源点云 std::cout << "\n--- 处理源点云: " << source_file << " ---" << std::endl; auto start_load_source = std::chrono::high_resolution_clock::now(); auto source_cloud = open3d::io::CreatePointCloudFromFile(source_file); auto end_load_source = std::chrono::high_resolution_clock::now(); if (!source_cloud || source_cloud->points_.empty()) { std::cerr << "错误: 无法读取源点云文件 " << source_file << std::endl; return; } auto load_duration_source = std::chrono::duration_cast<std::chrono::milliseconds>( end_load_source - start_load_source); std::cout << "加载时间: " << load_duration_source.count() << " ms" << std::endl; std::cout << "滤波: " << source_cloud->points_.size() << std::endl; // 执行半径滤波 auto start_filter_source = std::chrono::high_resolution_clock::now(); std::shared_ptr<open3d::geometry::PointCloud> filtered_source; std::vector<size_t> inlier_indices_source; std::tie(filtered_source, inlier_indices_source) = source_cloud->RemoveRadiusOutliers( min_neighbors, radius); auto end_filter_source = std::chrono::high_resolution_clock::now(); auto filter_duration_source = std::chrono::duration_cast<std::chrono::milliseconds>( end_filter_source - start_filter_source); std::cout << "滤波时间: " << filter_duration_source.count() << " ms" << std::endl; std::cout << "滤波: " << filtered_source->points_.size() << std::endl; double retention_rate_source = (filtered_source->points_.size() * 100.0 / source_cloud->points_.size()); std::cout << "保留比例: " << std::fixed << std::setprecision(2) << retention_rate_source << "%" << std::endl; // 处理目标点云 std::cout << "\n--- 处理目标点云: " << target_file << " ---" << std::endl; auto start_load_target = std::chrono::high_resolution_clock::now(); auto target_cloud = open3d::io::CreatePointCloudFromFile(target_file); auto end_load_target = std::chrono::high_resolution_clock::now(); if (!target_cloud || target_cloud->points_.empty()) { std::cerr << "错误: 无法读取目标点云文件 " << target_file << std::endl; return; } auto load_duration_target = std::chrono::duration_cast<std::chrono::milliseconds>( end_load_target - start_load_target); std::cout << "加载时间: " << load_duration_target.count() << " ms" << std::endl; std::cout << "滤波: " << target_cloud->points_.size() << std::endl; // 执行半径滤波 auto start_filter_target = std::chrono::high_resolution_clock::now(); std::shared_ptr<open3d::geometry::PointCloud> filtered_target; std::vector<size_t> inlier_indices_target; std::tie(filtered_target, inlier_indices_target) = target_cloud->RemoveRadiusOutliers( min_neighbors, radius); auto end_filter_target = std::chrono::high_resolution_clock::now(); auto filter_duration_target = std::chrono::duration_cast<std::chrono::milliseconds>( end_filter_target - start_filter_target); std::cout << "滤波时间: " << filter_duration_target.count() << " ms" << std::endl; std::cout << "滤波: " << filtered_target->points_.size() << std::endl; double retention_rate_target = (filtered_target->points_.size() * 100.0 / target_cloud->points_.size()); std::cout << "保留比例: " << std::fixed << std::setprecision(2) << retention_rate_target << "%" << std::endl; // 保存滤波后的点云(可选) std::cout << "\n--- 保存结果 ---" << std::endl; if (open3d::io::WritePointCloud("filtered_source.pcd", *filtered_source)) { std::cout << "源点云滤波结果保存为: filtered_source.pcd" << std::endl; } if (open3d::io::WritePointCloud("filtered_target.pcd", *filtered_target)) { std::cout << "目标点云滤波结果保存为: filtered_target.pcd" << std::endl; } // 汇总统计 std::cout << "\n=== 性能汇总 ===" << std::endl; std::cout << "源点云 - 加载: " << load_duration_source.count() << " ms, " << "滤波: " << filter_duration_source.count() << " ms, " << "总处理: " << (load_duration_source.count() + filter_duration_source.count()) << " ms" << std::endl; std::cout << "目标点云 - 加载: " << load_duration_target.count() << " ms, " << "滤波: " << filter_duration_target.count() << " ms, " << "总处理: " << (load_duration_target.count() + filter_duration_target.count()) << " ms" << std::endl; } // 估算点云平均间距的辅助函数 double estimatePointSpacing(const std::shared_ptr<open3d::geometry::PointCloud>& cloud, int num_samples) { if (cloud->points_.size() < 2) return 0.01; open3d::geometry::KDTreeFlann kdtree(*cloud); double total_distance = 0.0; int count = 0; // 随机采样计算平均最近邻距离 std::random_device rd; std::mt19937 gen(rd()); std::uniform_int_distribution<> dis(0, static_cast<int>(cloud->points_.size()) - 1); for (int i = 0; i < std::min(num_samples, static_cast<int>(cloud->points_.size())); ++i) { int idx = dis(gen); std::vector<int> indices; std::vector<double> distances; if (kdtree.SearchKNN(cloud->points_[idx], 2, indices, distances) == 2) { total_distance += std::sqrt(distances[1]); // 第一个是自身 count++; } } return count > 0 ? total_distance / count : 0.01; } // 自适应参数版本(可选) void adaptiveRadiusFilterDemo(const std::string& source_file, const std::string& target_file) { std::cout << "\n=== 自适应参数半径滤波 ===" << std::endl; // 处理源点云 auto source_cloud = open3d::io::CreatePointCloudFromFile(source_file); if (!source_cloud || source_cloud->points_.empty()) return; // 估算点云密度并自适应参数 double avg_spacing = estimatePointSpacing(source_cloud); double adaptive_radius = avg_spacing * 4.0; // 半径为平均间距的4倍 int adaptive_min_neighbors = static_cast<int>(15 * (0.01 / avg_spacing)); // 基于密度调整 std::cout << "估算间距: " << avg_spacing << " m" << std::endl; std::cout << "自适应参数 - 半径: " << adaptive_radius << ", 最小邻居: " << adaptive_min_neighbors << std::endl; auto start_time = std::chrono::high_resolution_clock::now(); auto filtered_result = source_cloud->RemoveRadiusOutliers(adaptive_min_neighbors, adaptive_radius); auto end_time = std::chrono::high_resolution_clock::now(); auto duration = std::chrono::duration_cast<std::chrono::milliseconds>(end_time - start_time); auto filtered_source = std::get<0>(filtered_result); std::cout << "自适应滤波时间: " << duration.count() << " ms" << std::endl; std::cout << "滤波: " << source_cloud->points_.size() << " " << std::endl; std::cout << "滤波: " << filtered_source->points_.size() << " " << std::endl; } int main(int argc, char** argv) { pcl::PointCloud<pcl::PointXYZ>::Ptr cloud(new pcl::PointCloud<pcl::PointXYZ>); pcl::PointCloud<pcl::PointXYZ>::Ptr cloud2(new pcl::PointCloud<pcl::PointXYZ>); pcl::PointCloud<pcl::PointXYZ>::Ptr cloud3(new pcl::PointCloud<pcl::PointXYZ>); pcl::PointCloud<pcl::PointXYZ>::Ptr cloud4(new pcl::PointCloud<pcl::PointXYZ>); pcl::PointCloud<pcl::PointXYZ>::Ptr cloud5(new pcl::PointCloud<pcl::PointXYZ>); pcl::PointCloud<pcl::PointXYZ>::Ptr cloud6(new pcl::PointCloud<pcl::PointXYZ>); pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_filtered(new pcl::PointCloud<pcl::PointXYZ>); pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_filtered1(new pcl::PointCloud<pcl::PointXYZ>); pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_filtered2(new pcl::PointCloud<pcl::PointXYZ>); pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_filtered3(new pcl::PointCloud<pcl::PointXYZ>); pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_filtered4(new pcl::PointCloud<pcl::PointXYZ>); pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_filtered5(new pcl::PointCloud<pcl::PointXYZ>); pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_filtered6(new pcl::PointCloud<pcl::PointXYZ>); pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_filtered7(new pcl::PointCloud<pcl::PointXYZ>); pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_filtered8(new pcl::PointCloud<pcl::PointXYZ>); pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_filtered9(new pcl::PointCloud<pcl::PointXYZ>); pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_filtered10(new pcl::PointCloud<pcl::PointXYZ>); pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_filtered11(new pcl::PointCloud<pcl::PointXYZ>); pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_filtered12(new pcl::PointCloud<pcl::PointXYZ>); pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_filtered13(new pcl::PointCloud<pcl::PointXYZ>); pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_filtered14(new pcl::PointCloud<pcl::PointXYZ>); pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_filtered15(new pcl::PointCloud<pcl::PointXYZ>); pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_filtered16(new pcl::PointCloud<pcl::PointXYZ>); pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_filtered17(new pcl::PointCloud<pcl::PointXYZ>); pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_filtered18(new pcl::PointCloud<pcl::PointXYZ>); pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_filtered19(new pcl::PointCloud<pcl::PointXYZ>); pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_filtered20(new pcl::PointCloud<pcl::PointXYZ>); pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_filtered21(new pcl::PointCloud<pcl::PointXYZ>); pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_filtered22(new pcl::PointCloud<pcl::PointXYZ>); pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_filtered23(new pcl::PointCloud<pcl::PointXYZ>); pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_filtered24(new pcl::PointCloud<pcl::PointXYZ>); pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_filtered25(new pcl::PointCloud<pcl::PointXYZ>); pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_filtered26(new pcl::PointCloud<pcl::PointXYZ>); pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_filtered27(new pcl::PointCloud<pcl::PointXYZ>); pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_filtered28(new pcl::PointCloud<pcl::PointXYZ>); pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_filtered29(new pcl::PointCloud<pcl::PointXYZ>); pcl::PointCloud<pcl::PointXYZ>::Ptr clouda(new pcl::PointCloud<pcl::PointXYZ>); pcl::PointCloud<pcl::PointXYZ>::Ptr cloudb(new pcl::PointCloud<pcl::PointXYZ>); pcl::PointCloud<pcl::PointXYZ>::Ptr cloudc(new pcl::PointCloud<pcl::PointXYZ>); //创建两个pcl::PointCloud<pcl::PointXYZ>共享指针,并初始化它们 pcl::PointCloud<pcl::PointXYZ>::Ptr clouda_left(new pcl::PointCloud<pcl::PointXYZ>); pcl::PointCloud<pcl::PointXYZ>::Ptr cloudb_left(new pcl::PointCloud<pcl::PointXYZ>); pcl::PointCloud<pcl::PointXYZ>::Ptr cloudb_right(new pcl::PointCloud<pcl::PointXYZ>); pcl::PointCloud<pcl::PointXYZ>::Ptr clouda_right(new pcl::PointCloud<pcl::PointXYZ>); //if (pcl::io::loadPCDFile("point_cloud_20251119.pcd", *clouda) < 0)//读取标准点云 //{ // std::cout << "error"; //} //std::cout << "点云数量: " << clouda->points.size() << std::endl; clock_t start34 = clock(); if (pcl::io::loadPCDFile("point_cloud_2025119_20_10.pcd", *cloudb) < 0) //读取采集点云 { std::cout << "error"; } std::cout << "点云数量: " << cloudb->points.size() << std::endl; clock_t end34 = clock(); // 记录程序运行到此结束时间 double cpu_time_used34 = static_cast<double>(end34 - start34) / CLOCKS_PER_SEC; //CLOCKS_PER_SEC将结果转为以秒为单位 std::cout << "PCL读取点云文件时间: " << cpu_time_used34 << " s\n"; //显示此段程序运行时间 clock_t start33 = clock(); pcl::RadiusOutlierRemoval<pcl::PointXYZ> ror1; // 半径滤波 ror1.setInputCloud(cloudb); //输入点云 ror1.setRadiusSearch(1.2f); // 设置搜索半径 ror1.setMinNeighborsInRadius(40); // 设置半径范围内的最少数阈值 ror1.filter(*cloudb); //保存滤波结果 std::cout << "3号相机采集--分割的ZDB点云数量--cloudb_left去除离散后 " << cloudb->points.size() << std::endl; clock_t end33 = clock(); // 记录程序运行到此结束时间 double cpu_time_used33 = static_cast<double>(end33 - start33) / CLOCKS_PER_SEC; //CLOCKS_PER_SEC将结果转为以秒为单位 std::cout << "PCL采集离散滤波时间: " << cpu_time_used33 << " s\n"; //显示此段程序运行时间 // 设置点云文件路径 std::string source_file = "point_cloud_2025119_20_10.pcd"; std::string target_file = "point_cloud_2025119_20_10.pcd"; // 执行标准半径滤波 radiusFilterDemo(source_file, target_file); // 可选:执行自适应参数版本 // adaptiveRadiusFilterDemo(source_file, target_file); std::cout << "\n=== 处理完成 ===" << std::endl; if (pcl::io::loadPCDFile("filtered_source.pcd", *cloudc) < 0) //读取采集点云 { std::cout << "error"; } std::cout << "点云数量: " << cloudc->points.size() << std::endl; ////................单个窗口显示两个图像.............// // 1. 创建PCLVisualizer对象 pcl::visualization::PCLVisualizer::Ptr viewer(new pcl::visualization::PCLVisualizer("3D Viewer")); viewer->setBackgroundColor(0, 0, 0); // 设置背景颜色为黑色 // 添加带文字标签的坐标轴 //参数:viewer, 轴长度, 线宽, 文字大小, 标识前缀, 原坐标 addCoordinateSystemWithLabels(viewer,800.0, 2.0, 50.0, "main_axis_", 0, 0, 0); //pcl::visualization::PointCloudColorHandlerCustom<pcl::PointXYZ> clouda_color(clouda_left, 0, 255, 0); // 设置为绿色 //viewer->addPointCloud<pcl::PointXYZ>(clouda_left, clouda_color, "clouda"); //viewer->setPointCloudRenderingProperties(pcl::visualization::PCL_VISUALIZER_POINT_SIZE, 1, "clouda"); // 设置大小 pcl::visualization::PointCloudColorHandlerCustom<pcl::PointXYZ> clouda_color1(cloudc, 0, 255, 0); // 设置为绿色 viewer->addPointCloud<pcl::PointXYZ>(cloudc, clouda_color1, "cloudb_left"); viewer->setPointCloudRenderingProperties(pcl::visualization::PCL_VISUALIZER_POINT_SIZE, 1, "clouda"); // 设置大小 // 5. 将第二个点云添加到可视化窗口并设置颜色(红色) pcl::visualization::PointCloudColorHandlerCustom<pcl::PointXYZ> cloud2_color(cloudb, 255, 0, 255); // 设置为粉色 viewer->addPointCloud<pcl::PointXYZ>(cloudb, cloud2_color, "cloud2"); viewer->setPointCloudRenderingProperties(pcl::visualization::PCL_VISUALIZER_POINT_SIZE, 1, "clouda"); // 设置大小 //pcl::visualization::PointCloudColorHandlerCustom<pcl::PointXYZ> cloud3_color(cloudb_right, 255, 0, 255); // 设置为红色 //viewer->addPointCloud<pcl::PointXYZ>(cloudb_right, cloud3_color, "cloud3"); //viewer->setPointCloudRenderingProperties(pcl::visualization::PCL_VISUALIZER_POINT_SIZE, 1, "cloud3"); // 设置大小 // 6. 启动可视化 while (!viewer->wasStopped()) { viewer->spinOnce(100); // 让可视化窗口刷新 } 上述程序中,实现了PCL的半径滤波Open3D的半径滤波时间对比,但是存在一个问题,原来程序中没有Open3D的半径滤波,PCL读取文件时间约为0.5s,后来添加了Open3D的半径滤波,导致PCL读取文件时间变为5s左右,时间明显变长,原因?开发环境,VS2022 PCL1.14.1版 Open3D 0.19版
最新发布
11-23
评论 1
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符  | 博主筛选后可见
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值