模型训练过程中常需边训练边做validation或在训练完的模型需要做测试,通常的做法当然是先创建model实例然后掉用load_state_dict()装载训练出来的权重到model里再调用model.eval()把模型转为测试模式,这样写对于训练完专门做测试时当然是比较合适的,但是对于边训练边做validation使用这种方式就需要写一堆代码,如果能使用copy.deepcopy()直接深度拷贝训练中的model用来做validation显然是比较简洁的写法,但是由于copy.deepcopy()的限制,写model里代码时如果没注意,调用copy.deepcopy(model)时可能就会遇到这个错误:Only Tensors created explicitly by the user (graph leaves) support the deepcopy protocol at the moment,详细错误信息如下:
File "/usr/local/lib/python3.6/site-packages/prc/framework/model/validation.py", line 147, in init_val_model
val_model = copy.deepcopy(model)
File "/usr/lib64/python3.6/copy.py", line 180, in deepcopy
y = _reconstruct(x, memo, *rv)
File "/usr/lib64/python3.6/copy.py", line 280, in _reconstruct
state = deepcopy(state, memo)
File "/usr/lib64/python3.6/copy.py", line 150, in deepcopy
y = copier(x, memo)
File "/usr/lib64/python3.6/copy.py", line 240, in _deepcopy_dict
y[deepcopy(key, memo)] = deepcopy(value, memo)
File "/usr/lib64/python3.6/copy.py", line 180, in deepcopy
y = _reconstruct(x, memo, *rv)
File "/usr/lib64/python3.6/copy.py", line 306, in _reconstruct
value = deepcopy(value, memo)
File "/usr/lib64/python3.6/copy.py", line 180, in deepcopy
y = _reconstruct(x, memo, *rv)
File "/usr/lib64/python3.6/copy.py", line 280, in _reconstruct
state = deepcopy(sta

本文探讨了在PyTorch中使用copy.deepcopy()时遇到的问题,即无法拷贝requires_grad=True的非叶子节点Tensor,并提供了相应的解决办法。
最低0.47元/天 解锁文章
2万+

被折叠的 条评论
为什么被折叠?



