[NeetCode 150] Redundant Connection

Redundant Connection

You are given a connected undirected graph with n nodes labeled from 1 to n. Initially, it contained no cycles and consisted of n-1 edges.

We have now added one additional edge to the graph. The edge has two different vertices chosen from 1 to n, and was not an edge that previously existed in the graph.

The graph is represented as an array edges of length n where edges[i] = [ai, bi] represents an edge between nodes ai and bi in the graph.

Return an edge that can be removed so that the graph is still a connected non-cyclical graph. If there are multiple answers, return the edge that appears last in the input edges.

Example 1:

Input: edges = [[1,2],[1,3],[3,4],[2,4]]

Output: [2,4]

Example 2:

Input: edges = [[1,2],[1,3],[1,4],[3,4],[4,5]]

Output: [3,4]

Constraints:

n == edges.length
3 <= n <= 100
1 <= edges[i][0] < edges[i][1] <= edges.length

There are no repeated edges and no self-loops in the input.

Solution

If the problem does not require to return the edge that appears last in the input edges, a DFS is enough to solve this problem. If we visit a repetitive node, return the last edge we pass.

Unfortulately, we need to output the last in the input edges. A solution is Disjoint Set Union, which allows us to process the edges in input order. When a new edge is coming, we check whether the corresponding 2 vertices are already in the same set. If so, just return this edge, or we union the sets the 2 vertices belongs to.

A technique called path compression can be applied on Disjoint Set Union, which means we directly set the parent vertice of each vertice to its root vertice, saving the time of jumping along the parent path.

Code

class Solution:
    def findRedundantConnection(self, edges: List[List[int]]) -> List[int]:
        cluster = [i for i in range(0, len(edges)+2)]
        def find(a):
            if cluster[a] == a:
                return a
            cluster[a] = find(cluster[a])
            return cluster[a]
        def link(a, b):
            cluster[find(b)] = find(a)
        for edge in edges:
            if find(edge[0]) == find(edge[1]):
                return edge
            link(edge[0], edge[1])

        
由于没有提供具体的参考引用内容,以下是基于一般知识对UCIE冗余通道(UCIE redundant lane)的介绍。 UCIE(Universal Chiplet Interconnect Express)是一种通用小芯片互连标准,冗余通道(redundant lane)在其中扮演着重要角色。冗余通道主要用于提高系统的可靠性和容错能力。 在UCIE系统中,数据通过通道进行传输。当正常工作的通道出现故障时,冗余通道可以立即接管数据传输任务,从而保证系统的连续性和稳定性。例如,在高速数据传输过程中,可能会受到电磁干扰、硬件损坏等因素影响,导致部分通道无法正常工作。此时,冗余通道就能发挥作用,避免数据传输中断。 冗余通道的设计还可以增强系统的可维护性。当检测到某个通道出现问题时,可以将其标记为故障通道,利用冗余通道继续工作,同时对故障通道进行维修或更换,而不会影响整个系统的运行。 ```python # 以下为一个简单的模拟UCIE冗余通道切换的示例代码 normal_lanes = [True] * 8 # 假设8个正常通道,初始都正常 redundant_lanes = [True] * 2 # 2个冗余通道,初始都正常 def check_lane_status(): for i, lane in enumerate(normal_lanes): if not lane: # 发现故障通道 for j, r_lane in enumerate(redundant_lanes): if r_lane: # 找到可用冗余通道 normal_lanes[i] = True # 用冗余通道替换故障通道 redundant_lanes[j] = False # 标记该冗余通道已使用 print(f"Switched to redundant lane {j} for normal lane {i}") break # 模拟某个正常通道出现故障 normal_lanes[3] = False check_lane_status() ```
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ShadyPi

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值