一、周期为2l的周期函数的傅里叶级数
实际问题中所遇到的周期函数,它的周期不一定是 2 π 2\pi 2π。如之前提到的矩形波,它的周期函数是 T = 2 π ω T=\frac{2\pi}{\omega} T=ω2π。因此,这里讨论周期为 2 l 2l 2l的周期函数的傅里叶级数。根据之前讨论的结果,经过自变量的变量代换,可得到下面的定理:
定理:设周期为2l的周期函数
f
(
x
)
f(x)
f(x)满足收敛定理的条件,则它的傅里叶级数展开式为
f
(
x
)
=
a
0
2
+
∑
n
=
1
∞
(
a
n
c
o
s
n
π
x
l
+
b
n
s
i
n
n
π
x
l
)
(
x
∈
C
)
f(x)=\frac{a_0}{2}+\sum_{n=1}^\infty(a_ncos\frac{n\pi x}{l}+b_nsin\frac{n\pi x}{l})(x\in C)
f(x)=2a0+n=1∑∞(ancoslnπx+bnsinlnπx)(x∈C)
其中
a
n
=
1
l
∫
−
l
l
f
(
x
)
c
o
s
n
π
x
l
d
x
(
n
=
0
,
1
,
2
,
⋅
⋅
⋅
)
b
n
=
1
l
∫
−
l
l
f
(
x
)
s
i
n
n
π
x
l
d
x
(
n
=
1
,
2
,
3
,
⋅
⋅
⋅
)
C
=
{
x
∣
f
(
x
)
=
1
2
[
f
(
x
−
)
+
f
(
x
+
)
]
}
a_n=\frac{1}{l}\int_{-l}^lf(x)cos\frac{n\pi x}{l}dx\quad (n=0,1,2,···) \\ b_n=\frac{1}{l}\int_{-l}^l f(x)sin\frac{n\pi x}{l}dx\quad (n=1,2,3,···)\\ C=\{x|f(x)=\frac{1}{2}[f(x^-)+f(x^+)]\}
an=l1∫−llf(x)coslnπxdx(n=0,1,2,⋅⋅⋅)bn=l1∫−llf(x)sinlnπxdx(n=1,2,3,⋅⋅⋅)C={x∣f(x)=21[f(x−)+f(x+)]}
当
f
(
x
)
f(x)
f(x)为奇函数时,
f
(
x
)
=
∑
n
=
1
∞
b
n
s
i
n
n
π
x
l
(
x
∈
C
)
f(x)=\sum_{n=1}^\infty b_nsin\frac{n\pi x}{l}\quad (x\in C)
f(x)=n=1∑∞bnsinlnπx(x∈C)
其中
b
n
=
2
l
∫
0
l
f
(
x
)
s
i
n
n
π
x
l
d
x
(
n
=
1
,
2
,
3
,
⋅
⋅
⋅
)
b_n=\frac{2}{l}\int_0^lf(x)sin\frac{n\pi x}{l}dx \quad (n=1,2,3,···)
bn=l2∫0lf(x)sinlnπxdx(n=1,2,3,⋅⋅⋅)
当
f
(
x
)
f(x)
f(x)为偶函数时,
f
(
x
)
=
a
0
2
+
∑
n
=
1
∞
a
n
c
o
s
n
π
x
l
(
x
∈
C
)
f(x)=\frac{a_0}{2}+\sum_{n=1}^\infty a_ncos\frac{n\pi x}{l}(x\in C)
f(x)=2a0+n=1∑∞ancoslnπx(x∈C)
其中
a
n
=
2
l
∫
0
l
f
(
x
)
c
o
s
n
π
x
l
d
x
(
n
=
0
,
1
,
2
,
⋅
⋅
⋅
)
a_n=\frac{2}{l}\int_0^l f(x)cos\frac{n\pi x}{l}dx \quad(n=0,1,2,···)
an=l2∫0lf(x)coslnπxdx(n=0,1,2,⋅⋅⋅)
二、傅里叶级数的复数形式
傅里叶级数可用复数形式表示,在电子技术中,经常应用这种形式。
设周期为
2
l
2l
2l的周期函数
f
(
x
)
f(x)
f(x)的傅里叶级数为
a
0
2
+
∑
n
=
1
∞
(
a
n
c
o
s
n
π
x
l
+
b
n
s
i
n
n
π
x
l
)
(1)
\frac{a_0}{2}+\sum_{n=1}^\infty(a_ncos\frac{n\pi x}{l}+b_nsin\frac{n\pi x}{l}) \tag{1}
2a0+n=1∑∞(ancoslnπx+bnsinlnπx)(1)
其中系数
a
n
a_n
an与
b
n
b_n
bn为
a
n
=
1
l
∫
−
l
l
f
(
x
)
c
o
s
n
π
x
l
d
x
(
n
=
0
,
1
,
2
,
⋅
⋅
⋅
)
b
n
=
1
l
∫
−
l
l
f
(
x
)
s
i
n
n
π
x
l
d
x
(
n
=
1
,
2
,
3
,
⋅
⋅
⋅
)
(2)
a_n=\frac{1}{l}\int_{-l}^lf(x)cos\frac{n\pi x}{l}dx \quad (n=0,1,2,···)\\ b_n=\frac{1}{l}\int_{-l}^lf(x)sin\frac{n\pi x}{l}dx \quad (n=1,2,3,···) \tag{2}
an=l1∫−llf(x)coslnπxdx(n=0,1,2,⋅⋅⋅)bn=l1∫−llf(x)sinlnπxdx(n=1,2,3,⋅⋅⋅)(2)
利用欧拉公式
c
o
s
t
=
e
t
i
+
e
−
t
i
2
,
s
i
n
t
=
e
t
i
−
e
−
t
i
2
i
cos\,t=\frac{e^{ti}+e^{-ti}}{2},\space sin\,t=\frac{e^{ti}-e^{-ti}}{2i}
cost=2eti+e−ti, sint=2ieti−e−ti
把(1)式化为
a
0
2
+
∑
n
=
1
∞
[
a
n
2
(
e
n
π
x
l
i
+
e
−
n
π
x
l
i
)
−
b
n
i
2
(
e
n
π
x
l
i
−
e
−
n
π
x
l
i
)
]
=
a
0
2
+
∑
n
=
1
∞
[
a
n
−
b
n
i
2
e
n
π
x
l
i
+
a
n
+
b
n
i
2
e
−
n
π
x
l
i
]
(3)
\frac{a_0}{2}+\sum_{n=1}^\infty[\frac{a_n}{2}(e^{\frac{n\pi x}{l}i}+e^{-\frac{n\pi x}{l}i})-\frac{b_ni}{2}(e^{\frac{n\pi x}{l}i}-e^{-\frac{n\pi x}{l}i})] \\ =\frac{a_0}{2}+\sum_{n=1}^\infty[\frac{a_n-b_ni}{2}e^{\frac{n\pi x}{l}i}+\frac{a_n+b_ni}{2}e^{-\frac{n\pi x}{l}i}] \tag{3}
2a0+n=1∑∞[2an(elnπxi+e−lnπxi)−2bni(elnπxi−e−lnπxi)]=2a0+n=1∑∞[2an−bnielnπxi+2an+bnie−lnπxi](3)
记
a
0
2
=
c
0
,
a
n
−
b
n
i
2
=
c
n
,
a
n
+
b
n
i
2
=
c
−
n
(
n
=
1
,
2
,
3
,
⋅
⋅
⋅
)
(4)
\frac{a_0}{2}=c_0, \quad \frac{a_n-b_ni}{2}=c_n,\quad \frac{a_n+b_ni}{2}=c_{-n} \quad (n=1,2,3,···) \tag{4}
2a0=c0,2an−bni=cn,2an+bni=c−n(n=1,2,3,⋅⋅⋅)(4)
则(2)式就表示为
c
0
+
∑
n
=
1
∞
(
c
n
e
n
π
x
l
i
+
c
−
n
e
−
n
π
x
l
i
)
=
(
c
n
e
n
π
x
l
i
)
n
=
0
+
∑
n
=
1
∞
(
c
n
e
n
π
x
l
i
+
c
−
n
e
−
n
π
x
l
i
)
c_0+\sum_{n=1}^\infty (c_ne^{\frac{n\pi x}{l}i}+c_{-n}e^{-\frac{n\pi x}{l}i})=(c_ne^{\frac{n\pi x}{l}i})_{n=0}+\sum_{n=1}^\infty(c_ne^{\frac{n\pi x}{l}i}+c_{-n}e^{-\frac{n\pi x}{l}i})
c0+n=1∑∞(cnelnπxi+c−ne−lnπxi)=(cnelnπxi)n=0+n=1∑∞(cnelnπxi+c−ne−lnπxi)
即得傅里叶级数的复数形式为
∑
n
=
−
∞
∞
c
n
e
n
π
x
l
i
\sum_{n=-\infty}^\infty c_ne^{\frac{n\pi x}{l}i}
n=−∞∑∞cnelnπxi
为得出系数
c
n
c_n
cn的表达式,把(2)式代入(4),得
c
0
=
a
0
2
=
1
2
l
∫
−
l
l
f
(
x
)
d
x
;
c
n
=
1
2
l
∫
−
l
l
f
(
x
)
e
−
n
π
x
l
d
x
(
n
=
1
,
2
,
3
,
⋅
⋅
⋅
)
c
−
n
=
a
n
+
b
n
i
2
=
1
2
l
∫
−
l
l
f
(
x
)
e
n
π
x
l
i
d
x
(
n
=
0
,
1
,
2
,
⋅
⋅
⋅
)
c_0=\frac{a_0}{2}=\frac{1}{2l}\int_{-l}^lf(x)dx ;\\ c_n=\frac{1}{2l}\int_{-l}^l f(x)e^{-\frac{n\pi x}{l}dx} \quad (n=1,2,3, ···) \\ c_{-n}=\frac{a_n+b_ni}{2}=\frac{1}{2l}\int_{-l}^lf(x)e^{\frac{n\pi x}{l}i}dx \quad (n=0, 1, 2,···)
c0=2a0=2l1∫−llf(x)dx;cn=2l1∫−llf(x)e−lnπxdx(n=1,2,3,⋅⋅⋅)c−n=2an+bni=2l1∫−llf(x)elnπxidx(n=0,1,2,⋅⋅⋅)
将已得的结果合并写为
c
n
=
1
2
l
∫
−
l
l
f
(
x
)
e
−
n
π
x
l
i
d
x
(
n
=
0
,
±
1
,
±
2
,
⋅
⋅
⋅
)
c_n=\frac{1}{2l}\int_{-l}^lf(x)e^{-\frac{n\pi x}{l}i}dx \quad (n=0,\pm 1,\pm 2, ···)
cn=2l1∫−llf(x)e−lnπxidx(n=0,±1,±2,⋅⋅⋅)
这就是傅里叶系数的复数形式。
傅里叶级数的两种形式本质上是一样的,但复数形式比较简洁,且只用一个算式计算系数。