转载:http://blog.youkuaiyun.com/xzzppp/article/details/52071546
本程序在py-faster-rcnn/tools/demo.py的基础上进行修改
程序功能:利用训练好的caffemodel,对人脸进行标注
- #!/usr/bin/env python
- # --------------------------------------------------------
- # Faster R-CNN
- # Copyright (c) 2015 Microsoft
- # Licensed under The MIT License [see LICENSE for details]
- # Written by Ross Girshick
- # --------------------------------------------------------
- """
- Demo script showing detections in sample images.
- See README.md for installation instructions before running.
- """
- import _init_paths
- from fast_rcnn.config import cfg
- from fast_rcnn.test import im_detect
- from fast_rcnn.nms_wrapper import nms
- from utils.timer import Timer
- import matplotlib.pyplot as plt
- import numpy as np
- import scipy.io as sio
- import caffe, os, sys, cv2
- import argparse
- #CLASSES = ('__background__',
- # 'aeroplane', 'bicycle', 'bird', 'boat',
- # 'bottle', 'bus', 'car', 'cat', 'chair',
- # 'cow', 'diningtable', 'dog', 'horse',
- # 'motorbike', 'person', 'pottedplant',
- # 'sheep', 'sofa', 'train', 'tvmonitor')
- CLASSES = ('__background__','face')
- NETS = {'vgg16': ('VGG16',
- 'VGG16_faster_rcnn_final.caffemodel'),
- 'myvgg': ('VGG_CNN_M_1024',
- 'VGG_CNN_M_1024_faster_rcnn_final.caffemodel'),
- 'zf': ('ZF',
- 'ZF_faster_rcnn_final.caffemodel'),
- 'myzf': ('ZF',
- 'zf_rpn_stage1_iter_80000.caffemodel'),
- }
- def vis_detections(im, class_name, dets, thresh=0.5):
- """Draw detected bounding boxes."""
- inds = np.where(dets[:, -1] >= thresh)[0]
- if len(inds) == 0:
- return
- #write_file.write(array[current_image] + ' ') #add by zhipeng
- #write_file.write('face' + ' ') #add by zhipeng
- im = im[:, :, (2, 1, 0)]
- #fig, ax = plt.subplots(figsize=(12, 12))
- #ax.imshow(im, aspect='equal')
- for i in inds:
- bbox = dets[i, :4]
- score = dets[i, -1]
- write_file.write(array[current_image] + ' ') #add by zhipeng
- #write_file.write('face' + ' ')
- ########## add by zhipeng for write rectange to txt ########
- #bbox[0]:x, bbox[1]:y, bbox[2]:x+w, bbox[3]:y+h
- write_file.write( "{} {} {} {}\n".format(str(int(bbox[0])), str(int(bbox[1])),
- str(int(bbox[2])-int(bbox[0])),
- str(int(bbox[3])-int(bbox[1]))))
- #print "zhipeng, bbox:", bbox, "score:",score
- ########## add by zhipeng for write rectange to txt ########
- def demo(net, image_name):
- """Detect object classes in an image using pre-computed object proposals."""
- # Load the demo image
- #im_file = os.path.join(cfg.DATA_DIR, 'demo', image_name)
- im = cv2.imread(image_name)
- # Detect all object classes and regress object bounds
- timer = Timer()
- timer.tic()
- scores, boxes = im_detect(net, im)
- timer.toc()
- print ('Detection took {:.3f}s for '
- '{:d} object proposals').format(timer.total_time, boxes.shape[0])
- # Visualize detections for each class
- CONF_THRESH = 0.8
- NMS_THRESH = 0.3
- for cls_ind, cls in enumerate(CLASSES[1:]):
- cls_ind += 1 # because we skipped background
- cls_boxes = boxes[:, 4*cls_ind:4*(cls_ind + 1)]
- cls_scores = scores[:, cls_ind]
- dets = np.hstack((cls_boxes,
- cls_scores[:, np.newaxis])).astype(np.float32)
- keep = nms(dets, NMS_THRESH)
- dets = dets[keep, :]
- vis_detections(im, cls, dets, thresh=CONF_THRESH)
- def parse_args():
- """Parse input arguments."""
- parser = argparse.ArgumentParser(description='Faster R-CNN demo')
- parser.add_argument('--gpu', dest='gpu_id', help='GPU device id to use [0]',
- default=0, type=int)
- parser.add_argument('--cpu', dest='cpu_mode',
- help='Use CPU mode (overrides --gpu)',
- action='store_true')
- parser.add_argument('--net', dest='demo_net', help='Network to use [vgg16]',
- choices=NETS.keys(), default='vgg16')
- args = parser.parse_args()
- return args
- if __name__ == '__main__':
- cfg.TEST.HAS_RPN = True # Use RPN for proposals
- args = parse_args()
- prototxt = os.path.join(cfg.MODELS_DIR, NETS[args.demo_net][0],
- 'faster_rcnn_alt_opt', 'faster_rcnn_test.pt')
- caffemodel = os.path.join(cfg.DATA_DIR, 'faster_rcnn_models',
- NETS[args.demo_net][1])
- if not os.path.isfile(caffemodel):
- raise IOError(('{:s} not found.\nDid you run ./data/script/'
- 'fetch_faster_rcnn_models.sh?').format(caffemodel))
- if args.cpu_mode:
- caffe.set_mode_cpu()
- else:
- caffe.set_mode_gpu()
- caffe.set_device(args.gpu_id)
- cfg.GPU_ID = args.gpu_id
- net = caffe.Net(prototxt, caffemodel, caffe.TEST)
- print '\n\nLoaded network {:s}'.format(caffemodel)
- # Warmup on a dummy image
- im = 128 * np.ones((300, 500, 3), dtype=np.uint8)
- for i in xrange(2):
- _, _= im_detect(net, im)
- '''''im_names = ['000456.jpg', '000542.jpg', '001150.jpg',
- '001763.jpg', '004545.jpg']'''
- ########## add by zhipeng for write rectange to txt ########
- #write_file_name = '/home/xiao/code/py-faster-rcnn-master/py-faster-rcnn/tools/detections/out.txt'
- #write_file = open(write_file_name, "w")
- ########## add by zhipeng for write rectange to txt ########
- # for current_file in range(1,11): #orginal range(1, 11)
- # print 'Processing file ' + str(current_file) + ' ...'
- read_file_name = '/home/xiao/code/py-faster-rcnn-master/py-faster-rcnn/data/pos_fold/name.txt'
- write_file_name = '/home/xiao/code/py-faster-rcnn-master/py-faster-rcnn/data/pos_fold/annotate.txt'
- write_file = open(write_file_name, "w")
- with open(read_file_name, "r") as ins:
- array = []
- for line in ins:
- line = line[:-1]
- array.append(line) # list of strings
- number_of_images = len(array)
- for current_image in range(number_of_images):
- if current_image % 100 == 0:
- print 'Processing image : ' + str(current_image)
- # load image and convert to gray
- read_img_name = '/home/xiao/code/py-faster-rcnn-master/py-faster-rcnn/data/pos/' + array[current_image].rstrip()
- #write_file.write(array[current_image]) #add by zhipeng
- demo(net, read_img_name)
- write_file.close()
- '''''for im_name in im_names:
- print '~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~'
- print 'Demo for data/demo/{}'.format(im_name)
- write_file.write(im_name + '\n') #add by zhipeng
- demo(net, im_name)'''
- #write_file.close() # add by zhipeng,close file
- plt.show()