py-faster-rcnn demo.py解析

本文介绍如何使用Faster R-CNN模型进行人脸检测,包括配置环境、加载模型、处理图片并展示检测结果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

    对py-faster-rcnn/tools/demo.py文件的解析:
    运行该文件:先cd进入到py-faster-rcnn根目录,再在命令后窗口输入: ./tools/demo.py --net myvgg   即可运行

#程序功能:调用caffemodel,画出检测到的人脸并显示

#用来指定用什么解释器运行脚本,以及解释器所在位置,这样就可以直接执行脚本
#!/usr/bin/env python

# --------------------------------------------------------
# Faster R-CNN
# Copyright (c) 2015 Microsoft
# Licensed under The MIT License [see LICENSE for details]
# Written by Ross Girshick
# --------------------------------------------------------

"""
Demo script showing detections in sample images.

See README.md for installation instructions before running.
"""

import _init_paths  #导入“_init_paths.py”文件
from fast_rcnn.config import cfg
from fast_rcnn.test import im_detect
from fast_rcnn.nms_wrapper import nms
from utils.timer import Timer 
import matplotlib.pyplot as plt  #导入用来画图的工具
import numpy as np  #numpg:矩阵计算模块
import scipy.io as sio  #scipy.io:对matlab中mat文件进行读取操作
import caffe, os, sys, cv2
import argparse  #argparse:是python用于解析命令行参数和选项的标准模块

#CLASSES = ('__background__',   #背景 + 类
#           'aeroplane', 'bicycle', 'bird', 'boat',
#           'bottle', 'bus', 'car', 'cat', 'chair',
#           'cow', 'diningtable', 'dog', 'horse',
#           'motorbike', 'person', 'pottedplant',
#           'sheep', 'sofa', 'train', 'tvmonitor')

CLASSES = ('__background__','face')  #只有一类:face

NETS = {'vgg16': ('VGG16',   #网络
                  'VGG16_faster_rcnn_final.caffemodel'),
        'myvgg': ('VGG_CNN_M_1024',
                  'VGG_CNN_M_1024_faster_rcnn_final.caffemodel'),
        'zf': ('ZF',
                  'ZF_faster_rcnn_final.caffemodel'),
        'myzf': ('ZF',
                  'zf_rpn_stage1_iter_80000.caffemodel'),
}


def vis_detections(im, class_name, dets, thresh=0.5):
    """Draw detected bounding boxes."""
    inds = np.where(dets[:, -1] >= thresh)[0]  #返回置信度大于阈值的窗口下标
    if len(inds) == 0:
        return

    im = im[:, :, (2, 1, 0)]
    fig, ax = plt.subplots(figsize=(12, 12))
    ax.imshow(im, aspect='equal')
    for i in inds:
        bbox = dets[i, :4]  #人脸坐标位置(Xmin,Ymin,Xmax,Ymax)
        score = dets[i, -1]  #置信度得分
		
        ax.add_patch(
            plt.Rectangle((bbox[0], bbox[1]),  #bbox[0]:x, bbox[1]:y, bbox[2]:x+w, bbox[3]:y+h
                          bbox[2] - bbox[0],
                          bbox[3] - bbox[1], fill=False,
                          edgecolor='red', linewidth=3.5)
            )
        ax.text(bbox[0], bbox[1] - 2,
                '{:s} {:.3f}'.format(class_name, score),
                bbox=dict(facecolor='blue', alpha=0.5),
                fontsize=14, color='white')

    ax.set_title(('{} detections with '
                  'p({} | box) >= {:.1f}').format(class_name, class_name,
                                                  thresh),
                  fontsize=14)
    plt.axis('off')
    plt.tight_layout()
    plt.draw()

def demo(net, image_name):
	#检测目标类,在图片中提议窗口
    """Detect object classes in an image using pre-computed object proposals."""

    # Load the demo image,得到图片绝对地址
    im_file = os.path.join(cfg.DATA_DIR, 'demo', image_name) #拼接路径,返回'A/B/C'之类路径
    im = cv2.imread(im_file)  #读取图片

    # Detect all object classes and regress object bounds
    timer = Timer()  #time.time()返回当前时间
    timer.tic()  #返回开始时间,见'time.py'中
    scores, boxes = im_detect(net, im)  #检测,返回得分和人脸区域所在位置
    timer.toc()  #返回平均时间,'time.py'文件中
    print ('Detection took {:.3f}s for '  #输出
           '{:d} object proposals').format(timer.total_time, boxes.shape[0])

    # Visualize detections for each class
    CONF_THRESH = 0.8
    NMS_THRESH = 0.3
    for cls_ind, cls in enumerate(CLASSES[1:]):  #enumerate:用于遍历序列中元素及他们的下标
        cls_ind += 1 # because we skipped background    ,cls_ind:下标,cls:元素
        cls_boxes = boxes[:, 4*cls_ind:4*(cls_ind + 1)]  #返回当前坐标
        cls_scores = scores[:, cls_ind]  #返回当前得分
        dets = np.hstack((cls_boxes,  #hstack:拷贝,合并参数
                          cls_scores[:, np.newaxis])).astype(np.float32)
        keep = nms(dets, NMS_THRESH)
        dets = dets[keep, :]
        vis_detections(im, cls, dets, thresh=CONF_THRESH)  #画检测框

def parse_args():
    """Parse input arguments."""
    parser = argparse.ArgumentParser(description='Faster R-CNN demo')
    parser.add_argument('--gpu', dest='gpu_id', help='GPU device id to use [0]',
                        default=0, type=int)
    parser.add_argument('--cpu', dest='cpu_mode',
                        help='Use CPU mode (overrides --gpu)',
                        action='store_true')
    parser.add_argument('--net', dest='demo_net', help='Network to use [vgg16]',
                        choices=NETS.keys(), default='vgg16')

    args = parser.parse_args()

    return args

if __name__ == '__main__':  #判断是否在直接运行该.py文件
    cfg.TEST.HAS_RPN = True  # Use RPN for proposals

    args = parse_args()  #模式设置

    prototxt = os.path.join(cfg.MODELS_DIR, NETS[args.demo_net][0],  #连接路径,设置prototxt文件
                            'faster_rcnn_alt_opt', 'faster_rcnn_test.pt')
    caffemodel = os.path.join(cfg.DATA_DIR, 'faster_rcnn_models',
                              NETS[args.demo_net][1])

    if not os.path.isfile(caffemodel):
        raise IOError(('{:s} not found.\nDid you run ./data/script/'
                       'fetch_faster_rcnn_models.sh?').format(caffemodel))

    if args.cpu_mode:
        caffe.set_mode_cpu()
    else:
        caffe.set_mode_gpu()
        caffe.set_device(args.gpu_id)
        cfg.GPU_ID = args.gpu_id
    net = caffe.Net(prototxt, caffemodel, caffe.TEST)  #设置网络

    print '\n\nLoaded network {:s}'.format(caffemodel)

    # Warmup on a dummy image
    im = 128 * np.ones((300, 500, 3), dtype=np.uint8)
    for i in xrange(2):  #xrange是一个类,返回的是一个xrange对象
        _, _= im_detect(net, im)
	#用于演示的图片名
    im_names = ['000456.jpg', '000542.jpg', '001150.jpg',
                '001763.jpg', '004545.jpg', '001.jpg', '002.jpg', '003.jpg',
                '004.jpg', '005.jpg', '006.jpg', '007.jpg', '008.jpg']
    for im_name in im_names:
        print '~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~'
        print 'Demo for data/demo/{}'.format(im_name)
        demo(net, im_name)  #逐个跑demo

    plt.show()


文件: import scrapy from demo1.items import Demo1Item import urllib from scrapy import log # BOSS直聘网站爬虫职位 class DemoSpider(scrapy.Spider): # 爬虫名, 启动爬虫时需要的参数*必填 name = 'demo' # 爬取域范围,允许爬虫在这个域名下进行爬取(可选) allowed_domains = ['zhipin.com'] # 爬虫需要的url start_urls = ['https://www.zhipin.com/c101280600/h_101280600/?query=测试'] def parse(self, response): node_list = response.xpath("//div[@class='job-primary']") # 用来存储所有的item字段 # items = [] for node in node_list: item = Demo1Item() # extract() 将xpath对象转换为Unicode字符串 href = node.xpath("./div[@class='info-primary']//a/@href").extract() job_title = node.xpath("./div[@class='info-primary']//a/div[@class='job-title']/text()").extract() salary = node.xpath("./div[@class='info-primary']//a/span/text()").extract() working_place = node.xpath("./div[@class='info-primary']/p/text()").extract() company_name = node.xpath("./div[@class='info-company']//a/text()").extract() item['href'] = href[0] item['job_title'] = job_title[0] item['sa 报错: C:\Users\xieqianyun\AppData\Local\Programs\Python\Python36\python.exe "C:\Users\xieqianyun\PyCharm Community Edition 2019.2.5\helpers\pydev\pydevconsole.py" --mode=client --port=55825 import sys; print('Python %s on %s' % (sys.version, sys.platform)) sys.path.extend(['C:\\Users\\xieqianyun\\demo1', 'C:/Users/xieqianyun/demo1']) Python 3.6.5 (v3.6.5:f59c0932b4, Mar 28 2018, 17:00:18) [MSC v.1900 64 bit (AMD64)] Type 'copyright', 'credits' or 'license' for more information IPython 7.10.0 -- An enhanced Interactive Python. Type '?' for help. PyDev console: using IPython 7.10.0 Python 3.6.5 (v3.6.5:f59c0932b4, Mar 28 2018, 17:00:18) [MSC v.1900 64 bit (AMD64)] on win32 runfile('C:/Users/xieqianyun/demo1/demo1/begin.py', wdir='C:/Users/xieqianyun/demo1/demo1') Traceback (most recent call last): File "C:\Users\xieqianyun\AppData\Local\Programs\Python\Python36\lib\site-packages\IPython\core\interactiveshell.py", line 3319, in run_code exec(code_obj, self.user_global_ns, self.user_ns) File "<ipython-input-2-fc5979762143>", line 1, in <module> runfile('C:/Users/xieqianyun/demo1/demo1/begin.py', wdir='C:/Users/xieqianyun/demo1/demo1') File "C:\Users\xieqianyun\PyCharm Community Edition 2019.2.5\helpers\pydev\_pydev_bundle\pydev_umd.py", line 197, in runfile pydev_imports.execfile(filename, global_vars, local_vars) # execute the script File "C:\Users\xieqianyun\PyCharm Community Edition 2019.2.5\helpers\pydev\_pydev_imps\_pydev_execfile.py", line 18, in execfile exec(compile(contents+"\n", file, 'exec'), glob, loc) File "C:/Users/xieqianyun/demo1/demo1/begin.py", line 3, in <module> cmdline.execute('scrapy crawl demo'.split()) File "C:\Users\xieqianyun\AppData\Local\Programs\Python\Python36\lib\site-packages\scrapy\cmdline.py", line 145, in execute cmd.crawler_process = CrawlerProcess(settings) File "C:\Users\xieqianyun\AppData\Local\Programs\Python\Python36\lib\site-packages\scrapy\crawler.py", line 267, in __init__ super(CrawlerProcess, self).__init__(settings) File "C:\Users\xieqianyun\AppData\Local\Programs\Python\Python36\lib\site-packages\scrapy\crawler.py", line 145, in __init__ self.spider_loader = _get_spider_loader(settings) File "C:\Users\xieqianyun\AppData\Local\Programs\Python\Python36\lib\site-packages\scrapy\crawler.py", line 347, in _get_spider_loader return loader_cls.from_settings(settings.frozencopy()) File "C:\Users\xieqianyun\AppData\Local\Programs\Python\Python36\lib\site-packages\scrapy\spiderloader.py", line 61, in from_settings return cls(settings) File "C:\Users\xieqianyun\AppData\Local\Programs\Python\Python36\lib\site-packages\scrapy\spiderloader.py", line 25, in __init__ self._load_all_spiders() File "C:\Users\xieqianyun\AppData\Local\Programs\Python\Python36\lib\site-packages\scrapy\spiderloader.py", line 47, in _load_all_spiders for module in walk_modules(name): File "C:\Users\xieqianyun\AppData\Local\Programs\Python\Python36\lib\site-packages\scrapy\utils\misc.py", line 73, in walk_modules submod = import_module(fullpath) File "C:\Users\xieqianyun\AppData\Local\Programs\Python\Python36\lib\importlib\__init__.py", line 126, in import_module return _bootstrap._gcd_import(name[level:], package, level) File "<frozen importlib._bootstrap>", line 994, in _gcd_import File "<frozen importlib._bootstrap>", line 971, in _find_and_load File "<frozen importlib._bootstrap>", line 955, in _find_and_load_unlocked File "<frozen importlib._bootstrap>", line 665, in _load_unlocked File "<frozen importlib._bootstrap_external>", line 678, in exec_module File "<frozen importlib._bootstrap>", line 219, in _call_with_frames_removed File "C:\Users\xieqianyun\demo1\demo1\spiders\demo.py", line 4, in <module> from scrapy import log ImportError: cannot import name 'log'
<think>好的,我需要帮助用户在py-faster-rcnn项目中下载预训练的VGG16模型。根据用户提供的引用信息,有几种方法可以下载这个模型。 首先,引用[1]提供了一个直接的下载链接:http://download.tensorflow.org/models/vgg_16_2016_08_28.tar.gz。用户可以直接用浏览器或迅雷下载这个文件,然后手动放置到项目的指定目录中。但用户提到可能无法打开某些链接,所以可能需要备用方法。 引用[2]和[3]提到通过运行脚本fetch_imagenet_models.sh来自动下载预训练模型。这个脚本位于项目的data/scripts目录下。用户只需要进入该目录并执行脚本即可。不过,用户可能遇到网络问题,导致脚本无法正常运行,这时候就需要手动下载。 引用[4]指出如果脚本无法下载,可以用迅雷手动下载,并将模型文件放入/py-faster-rcnn/data/imagenet_models目录中。这需要用户创建相应的文件夹结构,并确保文件名正确,例如VGG16.v2.caffemodel。 综合这些方法,用户可以选择自动脚本或手动下载。需要检查脚本是否有效,如果不行,就手动处理。同时,要确保模型文件放在正确的路径,避免后续训练或演示出错。最后,用户可能需要修改配置文件以适应自己的数据集,但这一步可能超出当前问题的范围,可以留到后续处理。</think>### 如何在 py-faster-rcnn 中下载预训练的 VGG16 模型 #### 方法一:通过脚本自动下载(推荐) 1. **进入项目脚本目录** ```bash cd py-faster-rcnn/data/scripts ``` 2. **执行下载脚本** ```bash ./fetch_faster_rcnn_models.sh ./fetch_imagenet_models.sh ``` 此脚本会自动下载预训练的 VGG16 模型(文件名如 `VGG16.v2.caffemodel`),并保存到 `py-faster-rcnn/data/imagenet_models` 目录[^2][^3]。 --- #### 方法二:手动下载(若脚本失效) 1. **直接下载模型文件** 使用浏览器或迅雷下载官方提供的模型文件: [VGG16 预训练模型下载链接](http://download.tensorflow.org/models/vgg_16_2016_08_28.tar.gz)[^1][^4] 2. **手动放置模型文件** - 在项目路径下创建目标目录: ```bash mkdir -p py-faster-rcnn/data/imagenet_models ``` - 将下载的 `vgg_16_2016_08_28.tar.gz` 解压,并将文件重命名为 `VGG16.v2.caffemodel`,放入上述目录[^4]。 --- #### 验证模型是否生效 运行项目演示时,若未报错提示模型缺失,则说明模型已正确加载: ```bash cd py-faster-rcnn ./tools/demo.py ``` ---
评论 11
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值