fpga系列 HDL: 竞争和冒险 01

  • 卡诺图是一种逻辑化简工具,用来在布尔函数的最小项和形式中,找到冗余项并实现逻辑化简。也可用于HDL中竞争和冒险的判断。

最小项

  • 任何一个逻辑函数都能化简为最小项的和的形式
  • 对于 n 个变量的布尔表达式,每个变量都必须以原变量(如A)或非变量(即否定的形式A’)出现,且在每个最小项中只能出现一次。每个最小项代表一个特定的输入组合。
  • 例:假设有两个变量 A A A B B B,则最小项可以表示为:

A ′ B ′ : 对应  ( A , B ) = ( 0 , 0 ) A'B' : \text{对应 } (A, B) = (0, 0) AB:对应 (A,B)=(0,0)

A ′ B : 对应  ( A , B ) = ( 0 , 1 ) A'B : \text{对应 } (A, B) = (0, 1) AB:对应 (A,B)=(0,1)

A B ′ : 对应  ( A , B ) = ( 1 , 0 ) AB' : \text{对应 } (A, B) = (1, 0) AB:对应 (A,B)=(1,0)

A B : 对应  ( A , B ) = ( 1 , 1 ) AB : \text{对应 } (A, B) = (1, 1) AB:对应 (A,B)=(1,1)

格雷码

格雷码(Gray Code)是一种特殊的二进制编码,每相邻两个数之间只有一个位发生变化。格雷码的这种特性在某些应用中可以减少误差和干扰,因此被广泛用于数字电路设计、编码器、存储器地址生成、错误校验等领域。

  • 格雷码可以循环排列,即从最大值到最小值过渡时也只有一个位变化。

  • n 位的格雷码可以通过以下递归方式生成:

    • 0 位格雷码: G ( 0 ) = [ 0 ] \text{G}(0) = [0] G(0)=[0]
    • 1 位格雷码: G ( 1 ) = [ 0 , 1 ] \text{G}(1) = [0, 1] G(1)=[0,1]
    • n 位格雷码:将 n-1 位格雷码的所有数按顺序排列,然后将 n-1 位格雷码的所有数按逆序排列。然后在第一个排列前加 0,在第二个排列前加 1。
  • 2 位格雷码生成过程:

    • 从 1 位格雷码 [ 0 , 1 ] [0, 1] [0,1] 开始。
    • 正序排列:[0, 1],在前面加 0 得到 [ 00 , 01 ] [00, 01] [00,01]
    • 逆序排列:[1, 0],在前面加 1 得到 [ 11 , 10 ] [11, 10]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值