定义:设a1,a2,d∈Za_1,a_2,d\in\Za1,a2,d∈Z,若d∣a1,d∣a2d\mid a_1,d\mid a_2d∣a1,d∣a2,则称ddd是a1a_1a1和a2a_2a2的公因数(common divisor).
一般地,设a1,a2,⋯ ,an,d∈Za_1,a_2,\cdots,a_n,d\in\Za1,a2,⋯,an,d∈Z,若d∣aid\mid a_id∣ai对∀1≤i≤n\forall1\le i \le n∀1≤i≤n成立,则称ddd是a1,a2,⋯ ,ana_1,a_2,\cdots,a_na1,a2,⋯,an的公因数.
定义:设a1,a2∈Za_1,a_2\in\Za1,a2∈Z不全为000,称a1,a2a_1,a_2a1,a2公因数中最大者为a1,a2a_1,a_2a1,a2的最大公因数(greatest common divisor),记做gcd(a1,a2)gcd(a_1,a_2)gcd(a1,a2)或(a1,a2)(a_1,a_2)(a1,a2).
一般地,设a1,a2,⋯ ,an∈Za_1,a_2,\cdots,a_n\in\Za1,a2,⋯,an∈Z不全为000,称a1,a2,⋯ ,ana_1,a_2,\cdots,a_na1,a2,⋯,an公因数中最大者为a1,a2,⋯ ,ana_1,a_2,\cdots,a_na1,a2,⋯,an的最大公因数,记做gcd(a1,a2,⋯ ,an)gcd(a_1,a_2,\cdots,a_n)gcd(a1,a2,⋯,an)或(a1,a2,⋯ ,an)(a_1,a_2,\cdots,a_n)(a1,a2,⋯,an).
若ddd是a1,a2,⋯ ,ana_1,a_2,\cdots,a_na1,a2,⋯,an的公因数,则−d-d−d也是a1,a2,⋯ ,ana_1,a_2,\cdots,a_na1,a2,⋯,an的公因数.所以(a1,a2,⋯ ,an)∈Z+(a_1,a_2,\cdots,a_n)\in\Z^+(a1,a2,⋯,an)∈Z+.
定义:若(a1,a2)=1(a_1,a_2)=1(a1,a2)=1,则称a1,a2a_1,a_2a1,a2互素.
一般地,若(a1,a2,⋯ ,an)=1(a_1,a_2,\cdots,a_n)=1(a1,a2,⋯,an)=1,则称a1,a2,⋯ ,ana_1,a_2,\cdots,a_na1,a2,⋯,an互素.
若a1,a2,⋯ ,ana_1,a_2,\cdots,a_na1,a2,⋯,an两两互素,则(a1,a2,⋯ ,an)=1(a_1,a_2,\cdots,a_n)=1(a1,a2,⋯,an)=1.
设a,b∈Za,b\in\Za,b∈Z不全为000,则k(a,b)∣k∈Z=ma+nb∣m,n∈Z\displaystyle {k(a,b)\mid k\in\Z}={ma+nb\mid m,n\in\Z}k(a,b)∣k∈Z=ma+nb∣m,n∈Z
定理:设a1,a2,⋯ ,an∈Za_1,a_2,\cdots,a_n\in\Za1,a2,⋯,an∈Z,记A=y∣y=∑i=1naixi,xi∈Z,1≤i≤n\displaystyle A={y\mid y=\sum_{i=1}^{n}{a_ix_i},\quad x_i\in\Z,\quad 1\le i \le n}A=y∣y=i=1∑naixi,xi∈Z,1≤i≤n,则(a1,a2,⋯ ,an)(a_1,a_2,\cdots,a_n)(a1,a2,⋯,an)是AAA中最小的正整数.
推论:(Bezout定理):设a1,a2,⋯ ,an∈Za_1,a_2,\cdots,a_n\in\Za1,a2,⋯,an∈Z不全为000,则∃x1,x2,⋯ ,xn∈Z\exists x_1,x_2,\cdots,x_n\in\Z∃x1,x2,⋯,xn∈Z,使得∑i=1naixi=(a1,a2,⋯ ,an)\displaystyle \sum_{i=1}^{n}{a_ix_i}=(a_1,a_2,\cdots,a_n)i=1∑naixi=(a1,a2,⋯,an).
推论:若d∣aid\mid a_id∣ai对∀1≤i≤n\forall 1\le i \le n∀1≤i≤n成立,则d∣(a1,a2,⋯ ,an)d\mid (a_1,a_2,\cdots,a_n)d∣(a1,a2,⋯,an).
一般地,若bi∣aib_i\mid a_ibi∣ai对∀1≤i≤n\forall 1\le i \le n∀1≤i≤n成立,则(b1,b2,⋯ ,bn)∣(a1,a2,⋯ ,an)(b_1,b_2,\cdots,b_n)\mid (a_1,a_2,\cdots,a_n)(b1,b2,⋯,bn)∣(a1,a2,⋯,an).
推论:若a1,a2,⋯ ,an∈Za_1,a_2,\cdots,a_n\in\Za1,a2,⋯,an∈Z不全为000,对∀m∈Z\forall m\in\Z∀m∈Z,∃x1,x2,⋯ ,xn∈Z\exists x_1,x_2,\cdots,x_n\in\Z∃x1,x2,⋯,xn∈Z,使得∑i=1naixi=m\displaystyle \sum_{i=1}^{n}{a_ix_i}=mi=1∑naixi=m当且仅当(a1,a2,⋯ ,an)∣m(a_1,a_2,\cdots,a_n)\mid m(a1,a2,⋯,an)∣m.
∑i=1naIxi=1\displaystyle \sum_{i=1}^{n}{a_Ix_i}=1i=1∑naIxi=1当且仅当(a1,a2,⋯ ,an)=1(a_1,a_2,\cdots,a_n)=1(a1,a2,⋯,an)=1.
定理:最大公因数的一些性质:
1.(a,b)=(b,a)=(∣a∣,∣b∣)(a,b)=(b,a)=(\lvert a \rvert , \lvert b \rvert )(a,b)=(b,a)=(∣a∣,∣b∣).
1’.(a1,a2,⋯ ,an)=(ai1,ai2,⋯ ,ain)=(∣a1∣,∣a2∣,⋯ ,∣an∣)(a_1,a_2,\cdots,a_n)=(a_{i_1},a_{i_2},\cdots,a_{i_n})=(\lvert a_1 \rvert , \lvert a_2 \rvert , \cdots , \lvert a_n \rvert )(a1,a2,⋯,an)=(ai1,ai2,⋯,ain)=(∣a1∣,∣a2∣,⋯,∣an∣).其中,(i1,i2,⋯ ,in)(i_1,i_2,\cdots,i_n)(i1,i2,⋯,in)是(1,2,⋯ ,n)(1,2,\cdots,n)(1,2,⋯,n)的一个排列.
2.若a≠0a\neq 0a̸=0,则(a,0)=a(a,a)=∣a∣(a,0)=a\quad (a,a)=\lvert a \rvert(a,0)=a(a,a)=∣a∣.
一般地,(0,a2,⋯ ,an)=(a2,⋯ ,an)(0,a_2,\cdots,a_n)=(a_2,\cdots,a_n)(0,a2,⋯,an)=(a2,⋯,an).
3.若b∣ab\mid ab∣a,则(a,b)=∣b∣(a,b)=\lvert b \rvert(a,b)=∣b∣,且对∀c∈Z\forall c\in\Z∀c∈Z,有(b,c)∣(a,c)(b,c)\mid (a,c)(b,c)∣(a,c).
4.(a1,a2)=(a1,a2+ka1)∀k∈Z(a_1,a_2)=(a_1,a_2+ka_1)\quad \forall k\in\Z(a1,a2)=(a1,a2+ka1)∀k∈Z.
4’.(a1,a2,⋯ ,an)=(a1,a2+k2a1,⋯ ,an+kna1)∀k2,⋯ ,kn∈Z(a_1,a_2,\cdots,a_n)=(a_1,a_2+k_2a_1,\cdots,a_n+k_na_1)\quad \forall k_2,\cdots,k_n \in\Z(a1,a2,⋯,an)=(a1,a2+k2a1,⋯,an+kna1)∀k2,⋯,kn∈Z.
5.若a=bq+ra=bq+ra=bq+r,则(a,b)=(b,r)q,r∈Z(a,b)=(b,r)\quad q,r\in\Z(a,b)=(b,r)q,r∈Z.
6.(ma,mb)=∣m∣(a,b)(ma,mb)=\lvert m \rvert (a,b)(ma,mb)=∣m∣(a,b),其中m≠0m\neq 0m̸=0.
6’.(ma1,ma2,⋯ ,man)=∣m∣(a1,a2,⋯ ,an)(ma_1,ma_2,\cdots,ma_n)=\lvert m \rvert (a_1,a_2,\cdots,a_n)(ma1,ma2,⋯,man)=∣m∣(a1,a2,⋯,an).
7.(a(a,b),b(a,b))=1\displaystyle (\frac{a}{(a,b)},\frac{b}{(a,b)})=1((a,b)a,(a,b)b)=1.
7’.(a1(a1,a2,⋯ ,an),a2(a1,a2,⋯ ,an),⋯ ,an(a1,a2,⋯ ,an))=1\displaystyle (\frac{a_1}{(a_1,a_2,\cdots,a_n)},\frac{a_2}{(a_1,a_2,\cdots,a_n)},\cdots,\frac{a_n}{(a_1,a_2,\cdots,a_n)})=1((a1,a2,⋯,an)a1,(a1,a2,⋯,an)a2,⋯,(a1,a2,⋯,an)an)=1.
8.设a,b,c∈Za,b,c\in\Za,b,c∈Z,若b∣acb\mid acb∣ac且(a,b)=1(a,b)=1(a,b)=1,则b∣cb\mid cb∣c.
若a∣c,b∣ca\mid c,b\mid ca∣c,b∣c且(a,b)=1(a,b)=1(a,b)=1,则ab∣cab\mid cab∣c.
若(a,b)=1(a,b)=1(a,b)=1,则(a,bc)=(a,c)(a,bc)=(a,c)(a,bc)=(a,c).
8’.(ai,bj)=11≤i≤m1≤j≤n\displaystyle (a_i,b_j)=1 \quad 1\le i \le m \quad 1\le j \le n(ai,bj)=11≤i≤m1≤j≤n,则(a1a2⋯an,b1b2⋯bn)=1(a_1a_2\cdots a_n,b_1b_2\cdots b_n)=1(a1a2⋯an,b1b2⋯bn)=1.
对于∀m,n∈Z,(a,b)=1\forall m,n\in\Z,(a,b)=1∀m,n∈Z,(a,b)=1当且仅当(am,bn)=1(a^m,b^n)=1(am,bn)=1.
8’’.设a,b∈Za,b\in\Za,b∈Z不全为000,n∈Z+n\in\Z^+n∈Z+,则(an,bn)=(a,b)n(a^n,b^n)=(a,b)^n(an,bn)=(a,b)n.
8’’’.设a,b∈Za,b\in\Za,b∈Z,a∣ba\mid ba∣b当且仅当an∣bna^n\mid b^nan∣bn.
定义:与公因子相似,设a,b∈Za,b\in\Za,b∈Z均不为000,若a1∣m,a2∣ma_1\mid m,\quad a_2\mid ma1∣m,a2∣m,则称mmm为a1,a2a_1,a_2a1,a2的公倍数.
一般地,非零整数a1,a2,⋯ ,ana_1,a_2,\cdots,a_na1,a2,⋯,an的公倍数中的最小正整数称为a1,a2,⋯ ,ana_1,a_2,\cdots,a_na1,a2,⋯,an的最小公倍数(least common multiple).记为[a1,a2,⋯ ,an]\displaystyle [a_1,a_2,\cdots,a_n][a1,a2,⋯,an].
最小公倍数和最大公因数有相似的性质.
定理:设a,b∈Za,b\in\Za,b∈Z均不为000,则(a,b)[a,b]=∣ab∣\displaystyle(a,b)[a,b]=\lvert ab \rvert(a,b)[a,b]=∣ab∣.
定义:设a∈Za\in\Za∈Z且a>1a>1a>1.若aaa的正因数只有111和aaa,则称aaa为素数(prime number).否则称aaa为合数.
定义:π(x)\pi(x)π(x)表示小于或等于某个实数xxx的素数个数.
定理:设a∈Za\in\Za∈Z且a>1a>1a>1,则aaa的除111以外的最小正因数为素数,且aaa为合数时,必有q≤a\displaystyle q\le \sqrt{a}q≤a.
推论(Eratosthenes筛法):若大于111的整数aaa不能被任何不超过a\displaystyle \sqrt{a}a的素数整除,则aaa必为素数.
定理:素数有无穷多个.
证明:设Z+\Z^+Z+中只有有限个素数p1,p2,⋯ ,pkp_1,p_2,\cdots,p_kp1,p2,⋯,pk,考虑a=p1p2⋯pk+1a=p_1p_2\cdots p_k+1a=p1p2⋯pk+1,显然a>1a>1a>1,aaa有素因数ppp,且p∈p1,p2,⋯ ,pk\displaystyle p\in{p_1,p_2,\cdots,p_k}p∈p1,p2,⋯,pk,则p∣p1p2⋯pkp\mid p_1p_2\cdots p_kp∣p1p2⋯pk.由p∣ap\mid ap∣a,p=±1p=\pm 1p=±1.与ppp是素数矛盾,所以素数有无穷多个.
定理:设ppp是素数,a∈Za\in\Za∈Z,则p∣ap\mid ap∣a或(p,a)=1(p,a)=1(p,a)=1.
推论:设ppp是素数,a1,a2,⋯ ,an∈Za_1,a_2,\cdots,a_n\in\Za1,a2,⋯,an∈Z,若p∣a1a2⋯anp\mid a_1a_2\cdots a_np∣a1a2⋯an,则∃ai1≤i≤n\exists a_i \quad 1\le i \le n∃ai1≤i≤n,使得p∣aip\mid a_ip∣ai.
若ppp为素数,p∣an(n≥1)\displaystyle p\mid a^n \quad (n\ge 1)p∣an(n≥1)当且仅当p∣ap\mid ap∣a.