二元微分极坐标在原点
01 原点处函数是否可微?
- 一般的,我们利用定义法判断可微:
- lim x → 0 y → 0 f ( x , y ) − f ( 0 , 0 ) x 2 + y 2 = 存在 ? \displaystyle{ \lim _{\substack{x \rightarrow 0 \\ y \rightarrow 0}} \frac{f(x,y)-f(0,0)}{\sqrt{x^2+y^2}}=存在? } x→0y→0limx2+y2f(x,y)−f(0,0)=存在? .
- lim r → 0 f ( r , θ ) − f ( 0 , 0 ) r = 存在 ? \displaystyle{ \lim _{r \rightarrow 0} \frac{f(r,\theta)-f(0,0)}{r} =存在? } r→0limrf(r,θ)−f(0,0)=存在? .
02 原点处函数是否连续?
(1) 理论
- 判断 r → 0 r\rightarrow 0 r→0 时的极限, lim r → 0 f ( r , θ ) = 存在 ? \displaystyle{ \lim _{r \rightarrow 0} f(r,\theta) =存在? } r→0limf(r,θ)=存在? .
- 注意,与 x , y x,y x,y 的关系类似, r r r 与 θ \theta θ 依然存在无穷小路径
(2) 例题
x → 0 x\rightarrow 0 x→0, y → 0 y\rightarrow 0 y→0, r → 0 r\rightarrow 0 r→0,
1. L = sin x y 2 x 2 + y 2 \displaystyle{ L=\frac{\sin xy^2}{x^2+y^2} } L=x2+y2sinxy2 .
- 当
x
=
0
x=0
x=0 且
y
=
0
y=0
y=0 时,
- L = sin x y 2 x 2 + y 2 = 0 x 2 + y 2 = 0 \displaystyle{ L=\frac{\sin xy^2}{x^2+y^2}=\frac{0}{x^2+y^2}=0 } L=x2+y2sinxy2=x2+y20=0 .
- 当
x
≠
0
x\neq0
x=0 且
y
≠
0
y\neq0
y=0 时,
- L = sin x y 2 x 2 + y 2 = x y 2 x 2 + y 2 = r 3 cos θ sin 2 θ r 2 \displaystyle{ L=\frac{\sin xy^2}{x^2+y^2}=\frac{xy^2}{x^2+y^2}=\frac{r^3\cos^{}\theta\sin^{2}\theta}{r^2} } L=x2+y2sinxy2=x2+y2xy2=r2r3cosθsin2θ .
- L = ⋯ = r cos θ sin 2 θ = 0 \displaystyle{ L=\cdots=r\cos^{}\theta\sin^{2}\theta=0 } L=⋯=rcosθsin2θ=0 .
2. L = sin x y 2 x 3 + y 2 \displaystyle{ L=\frac{\sin xy^2}{x^3+y^2} } L=x3+y2sinxy2 .
- 当
x
=
0
x=0
x=0 且
y
=
0
y=0
y=0 时,
- L L L 显然为 0 0 0 .
- 当
x
≠
0
x\neq0
x=0 且
y
≠
0
y\neq0
y=0 时,
- L = sin x y 2 x 3 + y 2 = x y 2 x 3 + y 2 = r 3 cos θ sin 2 θ r 3 cos 3 θ + r 2 sin 2 θ \displaystyle{ L=\frac{\sin xy^2}{x^3+y^2}=\frac{xy^2}{x^3+y^2}=\frac{r^3\cos^{}\theta\sin^{2}\theta}{r^3\cos^{3}\theta+r^2\sin^{2}\theta} } L=x3+y2sinxy2=x3+y2xy2=r3cos3θ+r2sin2θr3cosθsin2θ .
- L = ⋯ = r cos θ sin 2 θ r cos 3 θ + sin 2 θ = 1 cos 2 θ sin 2 θ + 1 r cos θ \displaystyle{ L=\cdots=\frac{r\cos^{}\theta\sin^{2}\theta}{r\cos^{3}\theta+\sin^{2}\theta}=\frac{1}{\displaystyle{ \frac{\cos^{2}\theta}{\sin^2\theta} }+\displaystyle{ \frac{1}{r\cos\theta} }} } L=⋯=rcos3θ+sin2θrcosθsin2θ=sin2θcos2θ+rcosθ11 .
- L = ⋯ = 1 cos 2 θ sin 2 θ + 1 r cos θ ⩽ 1 2 cos 2 θ sin 2 θ ⋅ 1 r cos θ \displaystyle{ L=\cdots=\frac{1}{\displaystyle{ \frac{\cos^{2}\theta}{\sin^2\theta} }+\displaystyle{ \frac{1}{r\cos\theta} }}\leqslant \frac{1}{2\sqrt{\displaystyle{ \frac{\cos^{2}\theta}{\sin^2\theta} }\cdot\displaystyle{ \frac{1}{r\cos\theta} }}}} L=⋯=sin2θcos2θ+rcosθ11⩽2sin2θcos2θ⋅rcosθ11 .
- L ⩽ 1 2 cos θ r sin 2 θ = 1 2 r sin 2 θ cos θ \displaystyle{ L\leqslant \frac{1}{2\sqrt{\displaystyle{\frac{\cos\theta}{r\sin^2\theta} }}}=\frac12\sqrt{\displaystyle{\frac{r\sin^2\theta}{\cos\theta} }}} L⩽2rsin2θcosθ1=21cosθrsin2θ . 当取 = = = 时, cos 2 θ sin 2 θ = 1 r cos θ \displaystyle{ \frac{\cos^2\theta}{\sin^2\theta}=\frac{1}{r\cos\theta} } sin2θcos2θ=rcosθ1 .
- L = 1 2 sin 2 θ cos 2 θ \displaystyle{ L=\frac12\displaystyle{\frac{\sin^2\theta}{\cos^2\theta} }} L=21cos2θsin2θ . 显然 L L L 并非定值,极限不存在。
3. L = x y 2 sin k y x 2 + y 4 \displaystyle{ L=\frac{xy^2\sin ky}{x^2+y^4} } L=x2+y4xy2sinky .
- 当
x
=
0
x=0
x=0 且
y
=
0
y=0
y=0 时,
- L L L 显然为 0 0 0 .
- 当
x
≠
0
x\neq0
x=0 且
y
≠
0
y\neq0
y=0 时,
- L = x y 2 sin k y x 2 + y 4 = k x y 3 x 2 + y 4 = k r 4 cos θ sin 4 θ r 2 cos 2 θ + r 4 sin 4 θ \displaystyle{ L=\frac{xy^2\sin ky}{x^2+y^4}=\frac{kxy^3}{x^2+y^4}=\frac{kr^4\cos^{}\theta\sin^{4}\theta}{r^2\cos^{2}\theta+r^4\sin^{4}\theta} } L=x2+y4xy2sinky=x2+y4kxy3=r2cos2θ+r4sin4θkr4cosθsin4θ .
- L = ⋯ = k r 2 cos θ sin 4 θ cos 2 θ + r 2 sin 4 θ = k cos θ r 2 sin 4 θ + 1 cos θ \displaystyle{ L=\cdots=\frac{kr^2\cos^{}\theta\sin^{4}\theta}{\cos^{2}\theta+r^2\sin^{4}\theta}=\frac{k}{\displaystyle{ \frac{\cos^{}\theta}{r^2\sin^4\theta} }+\displaystyle{ \frac{1}{\cos\theta} }} } L=⋯=cos2θ+r2sin4θkr2cosθsin4θ=r2sin4θcosθ+cosθ1k .
- L = ⋯ = k cos θ r 2 sin 4 θ + 1 cos θ ⩽ k 2 cos θ r 2 sin 4 θ ⋅ 1 cos θ \displaystyle{ L=\cdots=\frac{k}{\displaystyle{ \frac{\cos^{}\theta}{r^2\sin^4\theta} }+\displaystyle{ \frac{1}{\cos\theta} }}\leqslant \frac{k}{2\sqrt{\displaystyle{ \frac{\cos^{}\theta}{r^2\sin^4\theta} }\cdot\displaystyle{ \frac{1}{\cos\theta} }}}} L=⋯=r2sin4θcosθ+cosθ1k⩽2r2sin4θcosθ⋅cosθ1k .
- L ⩽ k 2 1 r 2 sin 4 θ = k 2 r sin 2 θ = 0 \displaystyle{ L\leqslant \frac{k}{2\sqrt{\displaystyle{\frac{1}{r^2\sin^4\theta} }}}=\frac k2\displaystyle{r\sin^2\theta }=0} L⩽2r2sin4θ1k=2krsin2θ=0 . 极限存在。
4. L = 2 x 2 y x 4 + y 2 \displaystyle{ L=\frac{2x^2y}{x^4+y^2} } L=x4+y22x2y .
- 当
x
=
0
x=0
x=0 且
y
=
0
y=0
y=0 时,
- L L L 显然为 0 0 0 .
- 当
x
≠
0
x\neq0
x=0 且
y
≠
0
y\neq0
y=0 时,
- L = 2 x 2 y x 4 + y 2 = 2 r 3 cos 2 θ sin θ r 4 cos 4 θ + r 2 sin 2 θ \displaystyle{ L=\frac{2x^2y}{x^4+y^2}=\frac{2r^3\cos^{2}\theta\sin^{}\theta}{r^4\cos^{4}\theta+r^2\sin^{2}\theta} } L=x4+y22x2y=r4cos4θ+r2sin2θ2r3cos2θsinθ .
- L = ⋯ = 2 cos 2 θ sin θ r cos 4 θ + sin 2 θ r = 2 r cos 2 θ sin θ + sin θ r cos 2 θ \displaystyle{ L=\cdots=\frac{2\cos^{2}\theta\sin^{}\theta}{r\cos^{4}\theta+\displaystyle{\frac{\sin^{2}\theta}{r}}}=\frac{2}{\displaystyle{ \frac{r\cos^{2}\theta}{\sin\theta} }+\displaystyle{ \frac{\sin\theta}{r\cos^2\theta} }} } L=⋯=rcos4θ+rsin2θ2cos2θsinθ=sinθrcos2θ+rcos2θsinθ2 .
- L = ⋯ = 2 r cos 2 θ sin θ + sin θ r cos 2 θ ⩽ 2 2 r cos 2 θ sin θ ⋅ sin θ r cos 2 θ \displaystyle{ L=\cdots=\frac{2}{\displaystyle{ \frac{r\cos^{2}\theta}{\sin\theta} }+\displaystyle{ \frac{\sin\theta}{r\cos^2\theta} }}\leqslant \frac{2}{2\sqrt{\displaystyle{ \frac{r\cos^{2}\theta}{\sin\theta} }\cdot\displaystyle{ \frac{\sin\theta}{r\cos^2\theta} }}}} L=⋯=sinθrcos2θ+rcos2θsinθ2⩽2sinθrcos2θ⋅rcos2θsinθ2 .
- L ⩽ 1 2 \displaystyle{ L\leqslant \frac{1}{2} } L⩽21 . 当取 = = = 时,显然 L L L 并非定值,极限不存在。
(4) 一个优秀的结论
- lim x → 0 y → 0 x p ⋅ y q x m + y n = 存在 ? \displaystyle{ \lim _{\substack{x \rightarrow 0 \\ y \rightarrow 0}} \frac{x^p\cdot y^q}{x^m+y^n}=存在? } x→0y→0limxm+ynxp⋅yq=存在? ( m , n m,n m,n 为正整数, p , q p,q p,q 为非负实数)
- m m m 和 n n n 不全为偶数,极限一定不存在。
-
m
m
m 和
n
n
n 全为偶数时,
- 若 p m + q n > 1 \displaystyle{ \frac pm+\frac qn>1 } mp+nq>1 ,则 lim x → 0 y → 0 x p ⋅ y q x m + y n = 0 \displaystyle{ \lim _{\substack{x \rightarrow 0 \\ y \rightarrow 0}} \frac{x^p\cdot y^q}{x^m+y^n}=0 } x→0y→0limxm+ynxp⋅yq=0 .
- 若 p m + q n ⩽ 1 \displaystyle{ \frac pm+\frac qn\leqslant1 } mp+nq⩽1 ,则 lim x → 0 y → 0 x p ⋅ y q x m + y n = 不存在 \displaystyle{ \lim _{\substack{x \rightarrow 0 \\ y \rightarrow 0}} \frac{x^p\cdot y^q}{x^m+y^n}=不存在 } x→0y→0limxm+ynxp⋅yq=不存在 .
- 此时选择 x p ⋅ y q x m + y n = k \displaystyle{ \frac{x^p\cdot y^q}{x^m+\bcancel{y^n}}=k } xm+yn xp⋅yq=k 的路径证明。
03 原点处偏导数是否存在?
求导链式法则
- 由复合函数求导链式法则,
- ∂ f ( x , y ) ∂ r = ∂ f ( r cos θ , r sin θ ) ∂ r = ∂ f ∂ x ∂ x ∂ r + ∂ f ∂ y ∂ y ∂ r = f x cos θ + f y sin θ \displaystyle{ \frac{\partial f(x, y)}{\partial r}=\frac{\partial f(r \cos \theta, r \sin \theta)}{\partial r} = \frac{\partial f}{\partial x} \frac{\partial x}{\partial r}+\frac{\partial f}{\partial y} \frac{\partial y}{\partial r}=f_x \cos \theta+f_y \sin \theta } ∂r∂f(x,y)=∂r∂f(rcosθ,rsinθ)=∂x∂f∂r∂x+∂y∂f∂r∂y=fxcosθ+fysinθ .
- 可以简单地写作: f r ′ = f x ′ ⋅ cos θ + f y ′ ⋅ sin θ f_r'=f_x'\cdot\cos\theta+f_y'\cdot\sin\theta fr′=fx′⋅cosθ+fy′⋅sinθ .
- 注意,对 r r r 求导时,需要将 r r r 的定义域拓展至 ( − ∞ , + ∞ ) (-\infty,+\infty) (−∞,+∞) .
对 x x x 的偏导数
- 如果要求 f x ′ ( 0 , 0 ) f_x'(0,0) fx′(0,0) ,因为 x = r cos θ , y = r sin θ x=r\cos\theta\ , \ y=r\sin\theta x=rcosθ , y=rsinθ .
- 由偏导数的定义得, f x ′ ( 0 , 0 ) = lim Δ x → 0 f ( 0 , Δ x ) − f ( 0 , 0 ) Δ x = lim x → 0 f ( 0 , x ) − f ( 0 , 0 ) x \displaystyle{ f_x'(0,0)=\lim_{\Delta x\rightarrow 0} \frac{f(0,\Delta x)-f(0,0)}{\Delta x}=\lim_{x\rightarrow 0} \frac{f(0,x)-f(0,0)}{x} } fx′(0,0)=Δx→0limΔxf(0,Δx)−f(0,0)=x→0limxf(0,x)−f(0,0) .
- x → 0 , y = 0 x\rightarrow 0\ ,\ y=0 x→0 , y=0,这意味着,在极坐标视角下, r → 0 , θ = 0 r\rightarrow 0\ , \ \theta=0 r→0 , θ=0 .
- 又因为,
f
r
′
=
f
x
′
⋅
cos
θ
+
f
y
′
⋅
sin
θ
f_r'=f_x'\cdot\cos\theta+f_y'\cdot\sin\theta
fr′=fx′⋅cosθ+fy′⋅sinθ,将
r
→
0
,
θ
=
0
r\rightarrow 0\ , \ \theta=0
r→0 , θ=0 的条件代入:
- f r ′ ∣ θ = 0 = f x ′ ⋅ cos θ ∣ θ = 0 + f y ′ ⋅ sin θ ∣ θ = 0 = f x ′ ∣ θ = 0 f_r'|_{\theta=0}=f_x'\cdot\cos\theta|_{\theta=0}+f_y'\cdot\sin\theta|_{\theta=0}=f_x'|_{\theta=0} fr′∣θ=0=fx′⋅cosθ∣θ=0+fy′⋅sinθ∣θ=0=fx′∣θ=0 .
- 这个结论表明,在原点对 x x x 的偏导数值等于当 θ = 0 \theta=0 θ=0 时,在原点对 r r r 的偏导数值
对 y y y 的偏导数
- 如果要求 f y ′ ( 0 , 0 ) f_y'(0,0) fy′(0,0) ,因为 x = r cos θ , y = r sin θ x=r\cos\theta\ , \ y=r\sin\theta x=rcosθ , y=rsinθ .
- 由偏导数的定义得, f y ′ ( 0 , 0 ) = lim Δ y → 0 f ( 0 , Δ y ) − f ( 0 , 0 ) Δ y = lim y → 0 f ( 0 , y ) − f ( 0 , 0 ) y \displaystyle{ f_y'(0,0)=\lim_{\Delta y\rightarrow 0} \frac{f(0,\Delta y)-f(0,0)}{\Delta y}=\lim_{y\rightarrow 0} \frac{f(0,y)-f(0,0)}{y} } fy′(0,0)=Δy→0limΔyf(0,Δy)−f(0,0)=y→0limyf(0,y)−f(0,0) .
- x = 0 , y → 0 x=0\ ,\ y\rightarrow 0 x=0 , y→0,这意味着,在极坐标视角下, r → 0 , θ = π / 2 r\rightarrow 0\ , \ \theta=\pi/2 r→0 , θ=π/2 .
- 又因为,
f
r
′
=
f
x
′
⋅
cos
θ
+
f
y
′
⋅
sin
θ
f_r'=f_x'\cdot\cos\theta+f_y'\cdot\sin\theta
fr′=fx′⋅cosθ+fy′⋅sinθ,将
r
→
0
,
θ
=
0
r\rightarrow 0\ , \ \theta=0
r→0 , θ=0 的条件代入:
- f r ′ ∣ θ = π / 2 = f x ′ ⋅ cos θ ∣ θ = π / 2 + f y ′ ⋅ sin θ ∣ θ = π / 2 = f x ′ ∣ θ = π / 2 f_r'|_{\theta=\pi/2}=f_x'\cdot\cos\theta|_{\theta=\pi/2}+f_y'\cdot\sin\theta|_{\theta=\pi/2}=f_x'|_{\theta=\pi/2} fr′∣θ=π/2=fx′⋅cosθ∣θ=π/2+fy′⋅sinθ∣θ=π/2=fx′∣θ=π/2 .
- 这个结论表明,在原点对 y y y 的偏导数值等于当 θ = π / 2 \theta=\pi/2 θ=π/2 时,在原点对 r r r 的偏导数值
04 原点处偏导数是否连续?
- 求非 0 0 0 点关于 r r r 的导数,然后把这个导数的极限算出来看是否相等