欧拉降幂公式与证明
转载自D-Tesla
欧拉降幂公式
AK≡AK%ϕ(m)+ϕ(m)( mod m) K>ϕ(m)A^K\equiv A^{K \%\phi(m) +\phi(m)}(\ mod\ m)\qquad \; K > \phi(m)AK≡AK%ϕ(m)+ϕ(m)( mod m)K>ϕ(m)
证明
今天在牛客多校的群里看一个数学大佬写的证明,不过是拍照,我决定动手自己写一下
AK≡AK%ϕ(m)+ϕ(m)( mod m) K>ϕ(m)(1)A^K\equiv A^{K \%\phi(m) +\phi(m)}(\ mod\ m)\qquad \ K > \phi(m)\quad(1)AK≡AK%ϕ(m)+ϕ(m)( mod m) K>ϕ(m)(1)
证明如下
1 若 (A,m)=1(A,m)=1(A,m)=1,根据欧拉定理 Aϕ(m)≡1(mod m)A^{\phi(m)} \equiv 1 ( mod\ m)Aϕ(m)≡1(mod m),即可轻易得证
2 若 (A,m)≠1(A,m) \not = 1(A,m)=1,证明如下
设K=a∗ϕ(m)+cK = a*\phi(m) + cK=a∗ϕ(m)+c a≥1,0≤c<ϕ(m)a \ge 1, 0\le c < \phi(m)a≥1,0≤c<ϕ(m)
那么欧拉降幂公式就是
AK≡Aa∗ϕ(m)+c≡Aϕ(m)+c( mod m)(2)A^K \equiv A^{ a*\phi(m) + c} \equiv A^{\phi(m)+c}(\ mod\ m)\quad{(2)}AK≡Aa∗ϕ(m)+c≡Aϕ(m)+c( mod m)(2)
即 证
Aa∗ϕ(m)≡Aϕ(m)(mod m)A^{a*\phi(m)} \equiv A^{\phi(m)}( mod\ m)Aa∗ϕ(m)≡Aϕ(m)(mod m)
即 证
A2∗ϕ(m)≡Aϕ(m)(mod m)A^{2*\phi(m)} \equiv A^{\phi(m)}( mod\ m)A2∗ϕ(m)≡Aϕ(m)(mod m)
移项
Aϕ(m)(Aϕ(m)−1)≡0(mod m)A^{\phi(m)}(A^{\phi(m)}-1) \equiv 0 ( mod\ m)Aϕ(m)(Aϕ(m)−1)≡0(mod m)
即证
m∣Aϕ(m)(Aϕ(m)−1)(3)m | A^{\phi(m)}(A^{\phi(m)}-1) \quad {(3)}m∣Aϕ(m)(Aϕ(m)−1)(3)
若有
(m(m,Aϕ(m)),A)=1(4)(\frac{m}{(m,A^{\phi(m)})} , A)= 1 \quad{(4)}((m,Aϕ(m))m,A)=1(4)
根据欧拉定理
Aϕ(m)≡Ak∗ϕ(m(m,Aϕ(m)))≡(Aϕ(m(m,Aϕ(m))))k≡1(mod (m(m,Aϕ(m)))A^{\phi(m)} \equiv A^{k*\phi(\frac{m}{ {(m,A^{\phi(m)})}})}\equiv {(A^{\phi(\frac{m}{ {(m,A^{\phi(m)})}})})}^k \equiv 1 ( mod\ (\frac{m}{(m,A^{\phi(m)})})Aϕ(m)≡Ak∗ϕ((m,Aϕ(m))m)≡(Aϕ((m,Aϕ(m))m))k≡1(mod ((m,Aϕ(m))m)
其中k≥1k \ge 1k≥1
移项即得 m(m,Aϕ(m))∣(Aϕ(m)−1)\frac{m}{(m,A^{\phi(m)})}| (A^{\phi(m) }- 1)(m,Aϕ(m))m∣(Aϕ(m)−1)
同时乘 (m,Aϕ(m)){(m,A^{\phi(m)})}(m,Aϕ(m))
即 m∣(m,Aϕ(m))∗(Aϕ(m)−1)m | {(m,A^{\phi(m)})}*(A^{\phi(m)}-1)m∣(m,Aϕ(m))∗(Aϕ(m)−1)
即 m∣Aϕ(m)(Aϕ(m)−1)m | A^{\phi(m)}(A^{\phi(m)}-1)m∣Aϕ(m)(Aϕ(m)−1)
就是 式 3
所以证明 式子 4
(m(m,Aϕ(m)),A)=1(\frac{m}{(m,A^{\phi(m)})} , A)= 1((m,Aϕ(m))m,A)=1
就好了
进行素因子分解
A=p1a1∗p2a2∗....∗pt1at1∗q1b1∗q2b2∗...∗qt2bt2A = p^{a_1}_1*p^{a_2}_2*....*p^{a_{t1}}_{t1} * q^{b_1}_1* q^{b_2}_2*...* q^{b_{t2}}_{t2}A=p1a1∗p2a2∗....∗pt1at1∗q1b1∗q2b2∗...∗qt2bt2
m=p1c1∗p2c2∗....∗pt1ct1∗r1d1∗r2d2∗...∗rt3dt33m = p^{c_1}_1*p^{c_2}_2*....*p^{c_{t1}}_{t1} * r^{d_1}_1* r^{d_2}_2*...* r^{d_{t3}}_{t3}3m=p1c1∗p2c2∗....∗pt1ct1∗r1d1∗r2d2∗...∗rt3dt33
(A,m)=p1min(a1,c1)∗p2min(a2,c2)∗....∗pt1min(at1,ct1)(A,m) = p^{min(a_1,c_1)}_1*p^{min(a_2,c_2)}_2*....*p^{{min(a_{t1},c_{t1})}}_{t1}(A,m)=p1min(a1,c1)∗p2min(a2,c2)∗....∗pt1min(at1,ct1)
(Aϕ(m),m)=p1min(a1∗ϕ(m),c1)∗p2min(a2∗ϕ(m),c2)∗....∗pt1min(at1∗ϕ(m),ct1)(A^{\phi(m)},m) = p^{min(a_1*\phi(m),c_1)}_1*p^{min(a_2*\phi(m),c_2)}_2*....*p^{{min(a_{t1}*\phi(m),c_{t1})}}_{t1}(Aϕ(m),m)=p1min(a1∗ϕ(m),c1)∗p2min(a2∗ϕ(m),c2)∗....∗pt1min(at1∗ϕ(m),ct1)
欧拉函数 ϕ(m)=p1c1−1∗p2c2−1∗....∗pt1ct1−1(p1−1)∗(p2−1)∗....∗(pt1−1)\phi(m) = p_1^{c_1-1}*p_2^{c_2-1}*....*p_{t1}^{c_{t1}-1}(p_1-1)*(p_2-1)*....* (p_{t1}-1)ϕ(m)=p1c1−1∗p2c2−1∗....∗pt1ct1−1(p1−1)∗(p2−1)∗....∗(pt1−1)
ai∗ϕ(m)≥ai∗pici−1∗(pi−1)≥pici−1∗(pi−1)≥pici−1a_i*\phi(m)\ge a_i*p_i^{c_i-1}*(p_i-1) \ge p_i^{c_i-1}*(p_i-1)\ge p_i^{c_i-1}ai∗ϕ(m)≥ai∗pici−1∗(pi−1)≥pici−1∗(pi−1)≥pici−1
证明
pici−1≥ci(6)p_i^{c_i-1} \ge c_i \quad{(6)}pici−1≥ci(6)
若 ci=1c_i = 1ci=1 ,成立
令 f(x)=ln(x)x−1f(x) = \frac{ln(x)}{x-1}f(x)=x−1ln(x)
在 [3,∞][3,\infty][3,∞] 单调减\
又有
f(2)=ln2<2≤pif(2) = ln2 < 2 \le p_if(2)=ln2<2≤pi
f(3)=ln3/2<2≤pif(3) = ln3/2 < 2\le p_if(3)=ln3/2<2≤pi
于是有 式子6 成立
于是有
(Aϕ(m),m)=p1min(a1∗ϕ(m),c1)∗p2min(a2∗ϕ(m),c2)∗....∗pt1min(at1∗ϕ(m),ct1)=p1c1∗p2c2∗....∗pt1ct1(A^{\phi(m)},m) = p^{min(a_1*\phi(m),c_1)}_1*p^{min(a_2*\phi(m),c_2)}_2*....*p^{{min(a_{t1}*\phi(m),c_{t1})}}_{t1} = p^{c_1}_1*p^{c_2}_2*....*p^{c_{t1}}_{t1}(Aϕ(m),m)=p1min(a1∗ϕ(m),c1)∗p2min(a2∗ϕ(m),c2)∗....∗pt1min(at1∗ϕ(m),ct1)=p1c1∗p2c2∗....∗pt1ct1
m(Aϕ(m),m)=q1b1∗q2b2∗...∗qt2bt2\frac{m}{(A^{\phi(m)},m)} = q^{b_1}_1* q^{b_2}_2*...* q^{b_{t2}}_{t2}(Aϕ(m),m)m=q1b1∗q2b2∗...∗qt2bt2
式子 4
(m(m,Aϕ(m)),A)=1(\frac{m}{(m,A^{\phi(m)})} , A)= 1((m,Aϕ(m))m,A)=1
得证
式子 3
m∣Aϕ(m)(Aϕ(m)−1)(3)m | A^{\phi(m)}(A^{\phi(m)}-1) \quad{(3)}m∣Aϕ(m)(Aϕ(m)−1)(3)
得证
式子 2
AK≡Aa∗ϕ(m)+c≡Aϕ(m)+c( mod m)(2)A^K \equiv A^{ a*\phi(m) + c} \equiv A^{\phi(m)+c}(\ mod\ m)\quad{(2)}AK≡Aa∗ϕ(m)+c≡Aϕ(m)+c( mod m)(2)
得证
欧拉降幂公式得证
AK≡AK%ϕ(m)+ϕ(m)( mod m) K>ϕ(m)(1)A^K\equiv A^{K \%\phi(m) +\phi(m)}(\ mod\ m)\qquad \; K > \phi(m) {(1)}AK≡AK%ϕ(m)+ϕ(m)( mod m)K>ϕ(m)(1)