f(t)f(t)f(t) has the property:
- The domain is (∞,−∞)(\infty, -\infty)(∞,−∞)
- The integral of f(t)f(t)f(t) is limited
∫−∞∞f(t)dt=A\int ^{\infty} _{-\infty}f(t)dt= A∫−∞∞f(t)dt=A
and
limt→∞f(t)=0{ \lim_{t \to \infty} f(t)=0}t→∞limf(t)=0
The Fourier transform of f(t)f(t)f(t)
f(t)→F(ω)f(t) \rightarrow F(\omega)f(t)→F(ω)
is
F(ω)=∫−∞∞f(t)exp(−jωt)dtF(\omega)=\int ^{\infty} _{-\infty}f(t)exp(-j\omega t)dtF(ω)=∫−∞∞f(t)exp(−jωt)dt
What is about the Fourier transform of the first derivative of f(t)f(t)f(t)?
Let’s use the definition
f′(t)→F(ω)f^{\prime}(t) \rightarrow F(\omega)f′(t)→F(ω)
F(f′(t))=∫−∞∞f′(t)exp(−jωt)dt\mathcal{F}\left (f^{\prime}(t) \right)=\int ^{\infty} _{-\infty}f^{\prime}(t) exp(-j\omega t)dtF(f′(t))=∫−∞∞f′(t)exp(−jωt)dt
Integral by part
F(ω)=f(t)exp(−jωt)∣−∞∞−∫−∞∞f(t)(exp(−jωt))′dtF(\omega)= f(t)exp(-j\omega t) \bigg |^{\infty}_{-\infty}-\int ^{\infty} _{-\infty}f(t) \left ( exp(-j\omega t) \right) ^{\prime} dtF(ω)=f(t)exp(−jωt)∣∣∣∣−∞∞−∫−∞∞f(t)(exp(−jωt))′dt
=f(t)exp(−jωt)∣−∞∞+jω∫−∞∞f(t)exp(−jωt)dt= f(t)exp(-j\omega t) \bigg |^{\infty}_{-\infty} + j\omega \int ^{\infty} _{-\infty}f(t) exp(-j\omega t) dt=f(t)exp(−jωt)∣∣∣∣−∞∞+jω∫−∞∞f(t)exp(−jωt)dt
=f(t)exp(−jωt)∣−∞∞+jω∫−∞∞f(t)exp(−jωt)dt= f(t)exp(-j\omega t) \bigg |^{\infty}_{-\infty} + j\omega \int ^{\infty} _{-\infty}f(t) exp(-j\omega t) dt=f(t)exp(−jωt)∣∣∣∣−∞∞+jω∫−∞∞f(t)exp(−jωt)dt
=jω∫−∞∞f(t)exp(−jωt)dt= j\omega \int ^{\infty} _{-\infty}f(t) exp(-j\omega t) dt=jω∫−∞∞f(t)exp(−jωt)dt
Therefore,
F(fn(t))=(jω)n∫−∞∞f(t)exp(−jωt)dt\mathcal{F}(f^n(t))= (j\omega)^n \int ^{\infty} _{-\infty}f(t) exp(-j\omega t) dtF(fn(t))=(jω)n∫−∞∞f(t)exp(−jωt)dt
傅里叶变换与导数性质
4886

被折叠的 条评论
为什么被折叠?



