- 博客(48)
- 资源 (8)
- 收藏
- 关注
原创 Optimization Algorithms
Reference:https://d2l.ai/chapter_optimization/index.htmlContentReview: Stochastic Gradient Descent (SGD)Momentum: Leaky AveragesExample: An Ill-conditioned ProblemThe Momentum MethodAdagradMotivation: Sparse FeaturesAdditional Benefits: PreconditioningTh
2021-09-11 05:09:36
480
原创 Attention Mechanisms
Reference:https://d2l.ai/chapter_attention-mechanisms/index.html 10.2-10.6ContentAttention Pooling-An ExampleAttention Scoring FunctionsAdditive AttentionScaled Dot-Product AttentionBahdanau AttentionSequence to Sequence LearningIncorporate Attention Mod
2021-09-06 17:15:28
361
原创 Modern Recurrent Neural Networks
Reference:https://d2l.ai/chapter_recurrent-modern/index.html 9.1-9.4ContentMotivationGated Recurrent Units (GRU)Reset Gate and Update GateHidden StateLong Short-Term Memory (LSTM)Input Gate, Forget Gate, and Output GateMemory CellHidden StateDeep Recurre
2021-09-05 17:59:00
260
原创 Recurrent Neural Networks
Reference:https://d2l.ai/chapter_recurrent-neural-networks/index.html (8.1 & 8.4)Pattern Recognition and Machine Learning 13.1-13.2ContentSequence ModelsAutoregressive ModelsMarkov ModelsLatent Autoregressive ModelsHidden Markov ModelsNeural Network
2021-09-03 04:11:59
294
原创 Vanishing and Exploding Gradients
Reference:https://d2l.ai/chapter_multilayer-perceptrons/numerical-stability-and-init.htmlGlorot X, Bengio Y. Understanding the difficulty of training deep feedforward neural networks[C]//Proceedings of the thirteenth international conference on artificia
2021-08-30 03:57:20
279
原创 Cross-Entropy Loss
Reference:https://en.wikipedia.org/wiki/Cross_entropyhttps://d2l.ai/chapter_linear-networks/softmax-regression.html#loss-functionDefinition: Cross-EntropyThe cross-entropy of the distribution qqq relative to a distribution ppp over a given set is defin
2021-08-30 03:55:23
295
原创 Minibatch Stochastic Gradient Descent
Reference:https://d2l.ai/chapter_linear-networks/linear-regression.htmlhttps://d2l.ai/chapter_linear-networks/linear-regression-scratch.htmlGradient descentx←x−η∂xL(x)\mathbf x\leftarrow \mathbf x-\eta \partial_{\mathbf x}\mathcal L(\mathbf x)x←x−η∂x
2021-08-30 03:54:43
305
原创 Bayesian Learning_ELBO, Variational Inference, and EM Algorithm
Reference:https://mbernste.github.io/posts/elbo/https://mbernste.github.io/posts/variational_inference/https://mbernste.github.io/posts/em/https://mbernste.github.io/posts/gmm_em/Theodoridis S. Machine learning: a Bayesian and optimization perspective
2021-08-27 04:24:13
513
原创 MA&ALA4.1&4.2_空间和子空间 (Space and Subspace)
注:本文是对Matrix Analysis and Applied Linear Algebra一书4.1节Space and Subspace和4.2节Four Fundamental Subspaces的学习笔记文章目录向量空间(Vector Space)子空间(Subspace)四个基本子空间列空间(Column Space)和行空间(Row Space)零空间(Nullspace)和左零空间(Left-Hand Nullspace)总结向量空间(Vector Space)定义一个向量空间涉及4
2021-05-10 05:02:39
552
原创 Distributed Source Coding
Reference:Elements of Information Theory, 2nd EditionSlides of EE4560, TUD文章目录IntroductionSlepian-Wolf CodingRandom BinningEncoding and Decoding SchemeOutline of Proof: AchievabilityInterpretation of Slepian-Wolf CodingIntroductionWe know how to enc
2021-04-13 06:09:10
322
原创 Network Information Theory
Reference:Elements of Information Theory, 2nd EditionSlides of EE4560, TUDContentIntroduction-Network IT FeaturesDiscrete Memoryless Multiple-Access ChannelBinary Multiplier ChannelBinary Erasure MA ChannelGaussian MA ChannelGaussian FDMA CapacityGaussi
2021-04-12 06:42:06
933
原创 Rate Distortion Theory
Reference:Elements of Information Theory, 2nd EditionSlides of EE4560, TUDContentQuantizationRate-Distortion TheoryBinary SourceGaussian SourceIndependent Gaussian VariablesGaussian Sources with MemoryAchievability of R(D)R(D)R(D) for i.i.d. SourcesFor
2021-04-01 03:32:36
654
原创 Data Compression
Reference:Elements of Information Theory, 2nd EditionSlides of EE4560, TUDContentConsequences of The AEP: Data CompressionSource CodesKraft InequalityOptimal CodesBounds on the optimal code lengthShannon CodeHuffman CodeArithmetic CodingProblem descrip
2021-03-19 05:53:22
626
原创 Channel Capacity 3: Gaussian Channel
Reference:Elements of Information Theory, 2nd EditionSlides of EE4560, TUD文章目录Differential EntropyGaussian ChannelsGaussian Channel CapacityBand-Limited ChannelParallel Gaussian ChannelsGaussian Channels with FeedbackDifferential EntropyWe now introdu
2021-03-07 03:24:15
432
原创 Channel Capacity 2: Channel Coding Theorem
Reference:Elements of Information Theory, 2nd EditionSlides of EE4560, TUDContentPreliminariesJointly Typical SequencesChannel Coding TheoremChannel with FeedbackSource-Channel SeparationPreliminariesWe analyze a communication system as shown in Figur
2021-03-02 06:37:32
458
原创 Channel Capacity 1: Discrete Channels
Reference:Elements of Information Theory, 2nd EditionSlides of EE4560, TUDContentChannel Capacity DefinitionExample ChannelsBinary Symmetrical Channel (BSC)Binary Erasure Channel (BEC)Binary Asymmetric Channel (BAC/Z-Channel)Symmetric ChannelsProperties
2021-02-25 05:05:02
700
2
原创 Asymptotic Equipartition Property
Reference:Elements of Information Theory, 2nd EditionSlides of EE4560, TUDContentAEPTypical SetHigh-probability SetsAEPIn information theory, the analog of the law of large numbers is the asymptotic equipartition property (AEP). It is a direct consequ
2021-02-22 01:57:26
535
原创 Information Measures
Information MeasuresReference:Elements of Information Theory, 2nd EditionSlides of EE4560, TUDContentInformation MeasuresEntropyMutual InformationEntropy RatesHow to measure information? →\to→ Hartley’s approach [slides 5] →\to→ Problems?no allowance
2021-02-19 00:40:11
166
原创 Feature Selection and Extraction
Reference:Pattern recognition, by Sergios Theodoridis, Konstantinos Koutroumbas (2009)Slides of CS4220, TUDContentThe Peaking Phenomenon (5.3)Class Separability Measures (5.6)DivergenceChernoff Bound and Bhattacharyya DistanceScatter MatricesFeature Sel
2020-12-30 06:37:20
387
原创 Composite Hypothesis Testing
ContentExample: DC Level in WGN with Unknown Amplitude (A>0)Example: DC Level in WGN with Unknown AmplitudeComposite Hypothesis Testing ApproachesBayesian ApproachGeneralized Likelihood Ratio Test (GLRT)Example: DC Level in WGN with Unknown Amplitude -
2020-12-18 06:58:19
339
原创 Probabilistic Models
Reference:Bishop C M. Pattern recognition and machine learning[M]. springer, 2006.Slides of CS4220, TUDContentBayesian InferenceBayes’ Theorem for Gaussian Variables (2.3.1-2.3.3)Conditional Gaussian distributionsMarginal Gaussian distributionsPartition
2020-12-17 04:29:45
282
原创 Random Signals
Reference:Kay S M. Fundamentals of statistical signal processing[M]. Prentice Hall PTR, 1993. (Vol.2 Ch. 5 - 5.6)Slides of ET4386, TUDContentExample: Energy DetectorGeneralization 1: Signals With Arbitrary Covariance MatricesEstimator-CorrelatorCanonica
2020-12-15 05:01:44
220
原创 Deterministic Signals
Reference:Kay S M. Fundamentals of statistical signal processing[M]. Prentice Hall PTR, 1993. (Vol.2 Ch. 4 - 4.4)Slides of ET4386, TUDContentMatched FiltersDevelopment of DetectorInterpretationPropertyPerformance of Matched FilterGeneralized Matched Fil
2020-12-12 05:45:26
320
原创 Support Vector Machines
Reference:Section 3.7 of Pattern recognition, by Sergios Theodoridis, Konstantinos Koutroumbas (2009)Slides of CS4220, TUDContentMargins: IntuitionSeparable ClassesNonseparable ClassesKernelsMargins: IntuitionLet xi,i=1,2,…,N,\mathbf x_{i}, i=1,2, \ld
2020-12-11 02:29:52
288
原创 Neyman Pearson Theorem
ContentIntroductionA simple detection problemGeneral problem formulationNeyman Pearson TheoremExample: DC Level in WGNReceiver Operating Characteristic (ROC)Example: Change in VarianceMinimum Probability of ErrorMinimum Bayes Risk DetectorExample: DC Level
2020-12-10 04:45:27
867
原创 General Bayesian Estimators (MMSE, MAP, LMMSE)
Reference:Kay S M. Fundamentals of statistical signal processing[M]. Prentice Hall PTR, 1993. (Ch. 11 - 11.5, Ch. 12 - 12.5)Slides of ET4386, TUDContentRisk FunctionsMinimum Mean Square Error Estimators (MMSE)PropertiesExample: Bayesian Fourier Analysis
2020-12-06 05:54:49
822
原创 The Bayesian Philosophy
ContentPrior Knowledge and EstimationChoosing a Prior PDFProperties of the Gaussian PDFBayesian Linear ModelWe now depart from the classical approach to statistical estimation in which the parameter θ\thetaθ of interest is assumed to be a deterministic bu
2020-12-02 03:13:16
156
原创 Linear Classification
Reference:Bishop C M. Pattern recognition and machine learning[M]. springer, 2006.- Chapter 4 up to and including 4.3.2ContentDiscriminant Functions (Nonprobabilistic Methods)Two classesMultiple classesLeast Squares for ClassificationFisher’s linear dis
2020-11-29 03:43:56
345
原创 Practical Estimators (MLE, BLUE, LS)
Reference:Kay S M. Fundamentals of statistical signal processing[M]. Prentice Hall PTR, 1993. (Ch. 6.1 - 6.5, Ch. 7.1 - 7.6, Ch. 8.1 - 8.5 and 8.8 - 8.9)Slides of ET4386, TUDContentMaximum Likelihood Estimator (MLE)Asymptotic Properties of the MLEExampl
2020-11-27 04:19:56
542
1
原创 Linear Regression
Reference:Bishop C M. Pattern recognition and machine learning[M]. springer, 2006.- Chapter 1 up to and including Subsection 1.2.5- Chapter 3 up to and including 3.1.2ContentLinear Regression: IntroExample: Polynomial Curve FittingProbabilistic Perspec
2020-11-23 01:36:52
337
原创 Cramer-Rao Lower Bound
Reference:Kay S M. Fundamentals of statistical signal processing[M]. Prentice Hall PTR, 1993. (Chapter 3-3.5)Slides of ET4386, TUDContentEstimator Accuracy ConsiderationsScore function and regularity conditionFisher informationCramer-Rao Lower Bound The
2020-11-17 05:58:58
805
原创 Classifiers Based on Bayes Decision Theory
Reference:Section 2.1-2.6 of Pattern recognition, by Sergios Theodoridis, Konstantinos Koutroumbas (2009)Slides of CS4220, TUDContentBayes Decision TheoryMinimizing the classification error probabilityMinimizing the average riskDiscriminant functions an
2020-11-16 06:45:44
242
原创 Minimum Variance Unbiased Estimation (MVU)
Reference:Kay S M. Fundamentals of statistical signal processing[M]. Prentice Hall PTR, 1993. (Chapter 2)Slides of ET4386, TUDContentAn ExampleMean Square Error CriterionMinimum Variance Unbiased EstimatorExistence of the Minimum Variance Unbiased Estim
2020-11-14 18:45:18
780
原创 Adaptive Filtering
Reference:Slides of EE4C03, TUDHayes M H. Statistical digital signal processing and modelingContentSteepest Descent AlgorithmStability / ConvergenceConverge rateMean-square errorLMS AlgorithmConvergence in the meanConvergence in the mean-squareNormalize
2020-11-01 03:13:30
445
原创 Optimum Filters
ContentThe FIR Wiener FilterFilteringPredictionDeconvolutionNoise cancellationDiscrete Kalman FilterThe discrete form of the Wiener filtering problem, is to design a filter to recover a signal d(n)d (n)d(n) from noisy observationsx(n)=d(n)+v(n)x(n)=d(n
2020-10-20 04:58:26
237
原创 Solutions of Maxwell‘s Equation
ReferenceSlides of EE4C05, TUDOrfanidis S J. Electromagnetic waves and antennas[J]. 2002.Jin J M. Theory and computation of electromagnetic fields[M]. John Wiley & Sons, 2011.ContentFundamentals of EM Wave RadiationEnergy transfer by EM fieldAn int
2020-10-15 05:05:35
1041
原创 Spectrum Estimation
Reference:Slides of EE4C03, TUDHayes M H. Statistical digital signal processing and modelingContentNonparametric MethodsThe PeriodogramA filter bank interpretation of the periodogramPerformance of the periodogramThe Modified PeriodogramPerformance of th
2020-10-12 03:27:37
352
原创 The Levinson Recursion
Reference:Slides of EE4C03, TUDHayes M H. Statistical digital signal processing and modelingContentDevelopment of the RecursionThe Lattice FilterFIR lattice filterIIR lattice filterPropertiesThe Schur AlgorithmCholesky Factorization of a Toeplitz Matrix
2020-10-06 03:10:48
641
原创 Transmission lines fundamentals
Transmission lines fundamentalsReference:Slides of EE4C05, TUDPozar D M. Microwave engineeringcontentTransmission lines fundamentalsWhat is a transmission lineSolutions (E⃗,H⃗\vec E,\vec HE,H) for TEM from Maxwell EquationsVoltage and current (V,IV,IV,I
2020-09-24 06:07:49
350
原创 Signal Modeling
ContentSignal modelsDetermine models: Least SquaresDetermine models: Pade ApproximationDetermine models: Prony’s MethodDM-Special case: All-pole modelingAll-pole modeling with finite dataAutocorrelation methodCovariance methodExamplesPole estimationChannel
2020-09-21 02:37:20
344
Elementary_probability_theory.pdf
2019-06-27
Machine Learning for OpenCV_ Intelligent image processing with Python.pdf
2019-06-01
Hands-On Start to Wolfram Mathematica.pdf
2019-06-01
Advanced PID Control-ISA (2005).pdf
2019-05-15
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人