luogu P1273 有线电视网

本文通过树形动态规划方法解决了一道关于电视台如何在不亏本的情况下,尽可能多地覆盖用户的算法题目。该问题涉及一棵树状结构,每个叶子节点代表一个愿意付费的用户,而树中的边则代表了连接成本。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目传送门:https://www.luogu.org/problemnew/show/P1273



题意:

有一棵树,根为1,为现场;叶子结点为用户,每一个用户愿意花费value[i]来获得电视直播;跟到叶子结点中间的部分为中转站,每一条道路修通需要a[i].z。求电视台不亏本所能送达的最多用户。



思路:

树形dp(相见代码)。



代码:

#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
	int n,m,len=0;
	struct node{int x,y,z,next;} a[100000];
	int last[3500],f[3500][3500];//f[x][j]表示以x为根的子树选取j个用户利润的最大值 
void ins(int x,int y,int z)
{
	a[++len].x=x;a[len].y=y;a[len].z=z;a[len].next=last[x];last[x]=len;
}
int dfs(int x,int fa)
{
	int tot=0,p=0;
	if(!a[last[x]].next) return 1;
	for(int i=last[x];i;i=a[i].next)
	{
		int y=a[i].y;
		if(y==fa) continue;
		p=dfs(y,x);
		tot+=p;
		for(int j=tot;j>=0;j--)//枚举以x根的子树的当前可以选多少个结点
			for(int k=0;k<=min(p,j);k++)//枚举以y为子树可以选多少个结点 
				f[x][j]=max(f[x][j],f[x][j-k]+f[y][k]-a[i].z);
	}
	return tot;
}
int main()
{
	int t,x,y;
	scanf("%d %d",&n,&m);
	for(int i=1;i<=n-m;i++)
	{
		scanf("%d",&t);
		for(int j=1;j<=t;j++)
		{
			scanf("%d %d",&x,&y);
			ins(i,x,y),ins(x,i,y);
		}
	}
	memset(f,-63,sizeof(f));
	for(int i=1;i<=n;i++)
		f[i][0]=0;
	for(int i=n-m+1;i<=n;i++)
		scanf("%d",&f[i][1]);
	dfs(1,0);
	for(int i=n;i>=0;i--)
		if(f[1][i]>=0)
		{
			printf("%d",i);
			return 0;
		}
} 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值