令 s=x+iy,(x,y∈R),s=x+iy,(x,y\in\mathbb{R}),s=x+iy,(x,y∈R), 1ns=e−xlnn−iylnn=cos(ylnn)−isin(ylnn)nx \frac{1}{n^{s}}=e^{-x\ln n-iy\ln n}=\frac{\cos(y\ln n)-i\sin(y\ln n)}{n^{x}}ns1=e−xlnn−iylnn=nxcos(ylnn)−isin(ylnn)
ζ(s)=ζ(x+iy)=∑n=1∞cos(ylnn)nx−i∑n=1∞sin(ylnn)nx=ez≠0\zeta(s)=\zeta(x+iy)=\sum_{n=1}^{\infty}{\frac{\cos(y\ln n)}{n^{x}}}-i\sum_{n=1}^{\infty}{\frac{\sin(y\ln n)}{n^{x}}}=e^z\ne0ζ(s)=ζ(x+iy)=n=1∑∞nxcos(ylnn)−in=1∑∞nxsin(ylnn)=ez=0
ez=r(cosθ+isinθ)e^z=r(\cos\theta+i\sin\theta)ez=r(cosθ+isinθ)
实部不能为 000,(且实部与虚部不能同时为 000,即 sinθ\sin\thetasinθ与cosθ\cos\thetacosθ不能同时为 000),所以 ζ(x+iy)≠0\zeta(x+iy)\ne0ζ(x+iy)=0 ,即在复数域 ζ(s)\zeta(s)ζ(s) 没有零点!