关键点提取是2D和3D信息处理中不可或缺的关键技术。
NARF(Normal Aligned Radial Feature)关键点
NARF(Normal Aligned Radial Feature)关键点是为了从深度图像中识别物体而提出的,关键点探测的重要一步是减少特征提取时的搜索空间,把重点放在重要的结构上,对NARF关键点提取过程中有以下要求:
- 提取的过程必须将边缘以及物体表面变化信息考虑在内;
- 关键点的位置必须稳定,可以被重复探测,及时换了不同的视角;
- 关键点所在的位置必须有稳定的支持区域,可以计算描述子并进行唯一的法向量估计。
关键点探测步骤如下:
- 遍历每个深度图像点,通过寻找在近邻区域有深度突变的位置进行边缘检测。
- 遍历每个深度图像点,根据近邻区域的表面变化决定一种测度表面变化的系数,以及变化的主方向。
- 根据第二步找到的主方向计算兴趣值,表征该方向与其他方向的不同,以及该处表面的变化情况,即改点有多稳定。
- 对兴趣值进行平滑过滤。
- 进行无最大值压缩找到最终的关键点,纪委NARF关键点。
Harris关键点:
Harris关键点检测通过计算图像点的Harris矩阵和矩阵对应的特征值来判断是否为关键点。如果Harris矩阵特征的两个特征值都很大,则该点为关键点。
Harris关键点检测算子对于图像旋转变换保持较好的检测重复率,但不适合尺寸变化的关键点检测。
点云中的3D Harris关键点借鉴了2D Harris关键点检测的思想,不过3D Harris关键点检测使用的是点云表面法向量的信息,而不是2D Harris关键点检测使用的图像梯度。
距离图像中提取NARF关键点
/* \author Bastian Steder */
#include <iostream>
#include <boost/thread/thread.hpp>
#include <pcl/range_image/range_image.h>
#include <pcl/io/pcd_io.h>
#include <pcl/visualization/range_image_visualizer.h>
#include <pcl/visualization/pcl_visualizer.h>
#include <pcl/features/range_image_border_extractor.h>
#include <pcl/keypoints/narf_keypoint.h>
#include <pcl/console/parse.h>
#include <pcl/common/file_io.h> // for getFilenameWithoutExtension
#ifdef WIN32
#define pcl_sleep(x) Sleep(1000*(x))
#else
#define pcl_sleep(x) sleep(x)
#endif
typedef pcl::PointXYZ PointType;
//参数
float angular_resolution = 0.5f;
float support_size = 0.2f;
pcl::RangeImage::CoordinateFrame coordinate_frame = pcl::RangeImage::CAMERA_FRAME;
bool setUnseenToMaxRange = false;
//打印帮助
void
printUsage(const char* progName)
{
std::cout << "\n\nUsage: " << progName << " [options] <scene.pcd>\n\n"
<< "Options:\n"
<< "-------------------------------------------\n"
<< "-r <float> angular resolution in degrees (default " << angular_resolution << ")\n"
<< "-c <int> coordinate frame (default " << (int)coordinate_frame << ")\n"
<< "-m Treat all unseen points as maximum range readings\n"
<< "-s <float> support size for the interest points (diameter of the used sphere - "
<< "default " << support_size << ")\n"
<< "-h this help\n"
<< "\n\n";
}
void
setViewerPose(pcl::visualization::PCLVisualizer& viewer, const Eigen::Affine3f& viewer_pose)
{
Eigen::Vector3f pos_vector = viewer_pose * Eigen::Vector3f(0, 0, 0);
Eigen::Vector3f look_at_vector = viewer_pose.rotation() * Eigen::Vector3f(0, 0, 1) + pos_vector;
Eigen::Vector3f up_vector = viewer_pose.rotation() * Eigen::Vector3f(0, -1, 0);
//viewer.camera_.pos[0] = pos_vector[0];
//viewer.camera_.pos[1] = pos_vector[1];
//viewer.camera_.pos[2] = pos_vector[2];
//viewer.camera_.focal[0] = look_at_vector[0];
//viewer.camera_.focal[1] = look_at_vector[1];
//viewer.camera_.focal[2] = look_at_vector[2];
//viewer.camera_.view[0] = up_vector[0];
//viewer.camera_.view[1] = up_vector[1];
//viewer.camera_.view[2] = up_vector[2];
viewer.setCameraPosition(pos_vector[0], pos_vector[1], pos_vector[2], look_at_vector[0], look_at_vector[1], look_at_vector[2], up_vector[0], up_vector[1], up_vector[2]);
//viewer.updateCamera();
}
// -----Main-----
int
main(int argc, char** argv)
{
//解析命令行参数
if (pcl::console::find_argument(argc, argv, "-h") >= 0)
{
printUsage(argv[0]);
return 0;
}
if (pcl::console::find_argument(argc, argv, "-m") >= 0)
{
setUnseenToMaxRange = true;
cout << "Setting unseen values in range image to maximum range readings.\n";
}
int tmp_coordinate_frame;
if (pcl::console::parse(argc, argv, "-c", tmp_coordinate_frame) >= 0)
{
coordinate_frame = pcl::RangeImage::CoordinateFrame(tmp_coordinate_frame);
cout << "Using coordinate frame " << (int)coordinate_frame << ".\n";
}
if (pcl::console::parse(argc, argv, "-s", support_size) >= 0)
cout << "Setting support size to " << support_size << ".\n";
if (pcl::console::parse(argc, argv, "-r", angular_resolution) >= 0)
cout << "Setting angular resolution to " << angular_resolution << "deg.\n";
angular_resolution = pcl::deg2rad(angular_resolution);
//读取给定的pcd文件或者自行创建随机点云
pcl::PointCloud<PointType>::Ptr point_cloud_ptr(new pcl::PointCloud<PointType>);
pcl::PointCloud<PointType>& point_cloud = *point_cloud_ptr;
pcl::PointCloud<pcl::PointWithViewpoint>far_ranges;
Eigen::Affine3f scene_sensor_pose(Eigen::Affine3f::Identity());
std::vector<int>pcd_filename_indices = pcl::console::parse_file_extension_argument(argc, argv, "pcd");
if (!pcd_filename_indices.empty())
{
std::string filename = argv[pcd_filename_indices[0]];
if (pcl::io::loadPCDFile(filename, point_cloud) == -1)
{
cerr << "Was not able to open file \"" << filename << "\".\n";
printUsage(argv[0]);
return 0;
}
scene_sensor_pose = Eigen::Affine3f(Eigen::Translation3f(point_cloud.sensor_origin_[0],
point_cloud.sensor_origin_[1],
point_cloud.sensor_origin_[2])) *
Eigen::Affine3f(point_cloud.sensor_orientation_);
std::string far_ranges_filename = pcl::getFilenameWithoutExtension(filename) + "_far_ranges.pcd";
if (pcl::io::loadPCDFile(far_ranges_filename.c_str(), far_ranges) == -1)
std::cout << "Far ranges file \"" << far_ranges_filename << "\" does not exists.\n";
}
else
{
setUnseenToMaxRange = true;
cout << "\nNo *.pcd file given =>Genarating example point cloud.\n\n";
for (float x = -0.5f; x <= 0.5f; x += 0.01f)
{
for (float y = -0.5f; y <= 0.5f; y += 0.01f)
{
PointType point; point.x = x; point.y = y; point.z = 2.0f - y;
point_cloud.points.push_back(point);
}
}
point_cloud.width = (int)point_cloud.points.size(); point_cloud.height = 1;
}
//从点云创建距离图像
float noise_level = 0.0;
float min_range = 0.0f;
int border_size = 1;
pcl::RangeImage::Ptr range_image_ptr(new pcl::RangeImage);
pcl::RangeImage& range_image = *range_image_ptr;
range_image.createFromPointCloud(point_cloud, angular_resolution, pcl::deg2rad(360.0f), pcl::deg2rad(180.0f),
scene_sensor_pose, coordinate_frame, noise_level, min_range, border_s

最低0.47元/天 解锁文章
417

被折叠的 条评论
为什么被折叠?



