洛谷P1613 跑路

题目描述

小A的工作不仅繁琐,更有苛刻的规定,要求小A每天早上在6:00之前到达公司,否则这个月工资清零。可是小A偏偏又有赖床的坏毛病。于是为了保住自己的工资,小A买了一个十分牛B的空间跑路器,每秒钟可以跑2^k千米(k是任意自然数)。当然,这个机器是用longint存的,所以总跑路长度不能超过maxlongint千米。小A的家到公司的路可以看做一个有向图,小A家为点1,公司为点n,每条边长度均为一千米。小A想每天能醒地尽量晚,所以让你帮他算算,他最少需要几秒才能到公司。数据保证1到n至少有一条路径。

输入格式

第一行两个整数n,m,表示点的个数和边的个数。

接下来m行每行两个数字u,v,表示一条u到v的边。

输出格式

一行一个数字,表示到公司的最少秒数。

输入输出样例

输入 #1复制

4 4
1 1
1 2
2 3
3 4

输出 #1复制

1

说明/提示

【样例解释】

1->1->2->3->4,总路径长度为4千米,直接使用一次跑路器即可。

【数据范围】

50%的数据满足最优解路径长度<=1000;

100%的数据满足n<=50,m<=10000,最优解路径长度<=maxlongint。

思路

利用倍增的思想,暴力枚举所有点之间的距离,如果两个点之间的距离可以凑成2的倍数,说明可以一秒直接到达,将这两个点的距离设为1。用bool数组表示两个点的状态 g[i,j,k] :i到j要k步。三个点直接的距离为k-1,则可以合并为k。将所有能一步走到的点全部标记后,就可以用最短路解题

代码

#include<iostream>
#include<cstring>
#include<bits/stdc++.h>

using namespace std;
typedef long long ll;
typedef pair<ll,int> PII;
const int N=55,INF=1e16;
int h[N],ne[N],e[N],idx;
ll d[N][N];
bool g[N][N][66];
int n,m;
void add(int a,int b)
{
	e[idx]=b,ne[idx]=h[a],h[a]=idx++;
}
int main()
{
	memset(d,10,sizeof d);
	memset(h,-1,sizeof h);
	cin>>n>>m;
	for(int i=1;i<=m;i++)
	{
		int a,b;
		cin>>a>>b;
		add(a,b);
		g[a][b][0]=true;  //  初始状态 
		d[a][b]=1;
	}
	
	for(int u=0;u<=64;u++)  // 枚举所有u  (2^u) 2^64次方足以 
	for(int i=1;i<=n;i++)  //  暴力枚举所有点 
	for(int k=1;k<=n;k++)
	for(int j=1;j<=n;j++)
	{
		if(g[i][k][u] && g[k][j][u])  //  如果这两个路径可以合并为一步走完,就合并 
		{
			g[i][j][u+1]=true;   //  维护这两个点的状态 
			d[i][j]=1;           //  更新距离,用于找最短路 
		}
	}
	
	for(int k=1;k<=n;k++){       //  floyd 找最短路 
		for(int i=1;i<=n;i++){
			for(int j=1;j<=n;j++)
			{
				d[i][j]=min(d[i][j],d[i][k]+d[k][j]);
			}
		}
	}
	cout<<d[1][n];
	
	return 0;
}

### 关于动态规划 (Dynamic Programming, DP) 的解决方案 在解决平台上的编程问题时,尤其是涉及动态规划的题目,可以采用以下方法来构建解决方案: #### 动态规划的核心思想 动态规划是一种通过把原问题分解为相对简单的子问题的方式来求解复杂问题的方法。其核心在于存储重复计算的结果以减少冗余运算。通常情况下,动态规划适用于具有重叠子问题和最优子结构性质的问题。 对于动态规划问题,常见的思路包括定义状态、转移方程以及边界条件的设计[^1]。 --- #### 题目分析与实现案例 ##### **P1421 小玉买文具** 此题是一个典型的简单模拟问题,可以通过循环结构轻松完成。以下是该问题的一个可能实现方式: ```cpp #include <iostream> using namespace std; int main() { int n; cin >> n; // 输入购买数量n double p, m, c; cin >> p >> m >> c; // 输入单价p,总金额m,优惠券c // 计算总价并判断是否满足条件 if ((double)n * p <= m && (double)(n - 1) * p >= c) { cout << "Yes"; } else { cout << "No"; } return 0; } ``` 上述代码实现了基本逻辑:先读取输入数据,再根据给定约束条件进行验证,并输出最终结果[^2]。 --- ##### **UOJ104 序列分割** 这是一道经典的区间动态规划问题。我们需要设计一个二维数组 `f[i][j]` 表示前 i 次操作后得到的最大价值,其中 j 是最后一次切割的位置。具体实现如下所示: ```cpp #include <bits/stdc++.h> using namespace std; const int MAXN = 5e3 + 5; long long f[MAXN], sumv[MAXN]; int a[MAXN]; int main(){ ios::sync_with_stdio(false); cin.tie(0); int n,k; cin>>n>>k; for(int i=1;i<=n;i++)cin>>a[i]; for(int i=1;i<=n;i++)sumv[i]=sumv[i-1]+a[i]; memset(f,-0x3f,sizeof(f)); f[0]=0; for(int t=1;t<=k;t++){ vector<long long> g(n+1,LLONG_MIN); for(int l=t;l<=n;l++)g[l]=max(g[l-1],f[t-1][l-1]); for(int r=t;r<=n;r++)f[r]=max(f[r],g[r]+sumv[r]*t); } cout<<f[n]<<'\n'; return 0; } ``` 这段程序利用了滚动数组优化空间复杂度,同时保持时间效率不变[^3]。 --- ##### **其他常见问题** 针对复杂的路径覆盖类问题(如 PXXXX),我们往往需要结合一维或多维动态规划模型加以处理。例如,在某些场景下,我们可以设定 dp 数组记录到达某一点所需最小代价或者最大收益等指标[^4]。 --- ### 总结 以上展示了如何运用动态规划技巧去应对不同类型的算法挑战。无论是基础还是高级应用场合,合理选取合适的数据结构配合清晰的状态转换关系都是成功解决问题的关键所在。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值