7、Elasticsearch数据检索、配置与集群扩展

Elasticsearch数据检索、配置与集群扩展

1. 数据检索

在数据检索方面,我们有多种方式来获取所需信息。
- 搜索与聚合 :当我们对数据进行搜索时,可能会有不同的场景。例如,搜索结果显示,在总共六个术语中,“lee”出现了两次,“andy”出现了一次等。如果我们知道Lee组织了两个群组,就可以搜索以Lee为组织者的群组来缩小搜索结果范围。而当我们不知道具体要搜索什么时,聚合功能就非常有用了。比如,我们想了解有哪些类型的群组,或者在我居住的附近是否有举办的活动,就可以使用聚合功能深入分析可用数据并查看实时统计信息。
- 按ID检索文档 :如果我们确切知道需要的文档,就可以通过文档ID来检索。要检索特定文档,必须知道它所属的索引、类型和ID,然后向该文档的URI发出HTTP GET请求。示例如下:

% curl 'localhost:9200/get-together/group/1?pretty'
{
  "_index" : "get-together",
  "_type" : "group",
  "_id" : "1",
  "_version" : 1,
  "found" : true,
  "_source" : {
  "name": "Denver Clojure",
  "organizer": ["Daniel", "Lee"]
}

如果文档存在, found 字段为 true ,还能看到其版本和源数据;如果文档不存在,

【轴承故障诊断】基于融合鱼鹰和柯西变异的麻雀优化算法OCSSA-VMD-CNN-BILSTM轴承诊断研究【西储大学数据】(Matlab代码实现)内容概要:本文提出了一种基于融合鱼鹰和柯西变异的麻雀优化算法(OCSSA)优化变分模态分解(VMD)参数,并结合卷积神经网络(CNN)双向长短期记忆网络(BiLSTM)的轴承故障诊断模型。该方法利用西储大学公开的轴承数据集进行验证,通过OCSSA算法优化VMD的分解层数K和惩罚因子α,有效提升信号分解精度,抑制模态混叠;随后利用CNN提取故障特征的空间信息,BiLSTM捕捉时间序列的动态特征,最终实现高精度的轴承故障分类。整个诊断流程充分结合了信号预处理、智能优化深度学习的优势,显著提升了复杂工况下轴承故障诊断的准确性鲁棒性。; 适合人群:具备一定信号处理、机器学习及MATLAB编程基础的研究生、科研人员及从事工业设备故障诊断的工程技术人员。; 使用场景及目标:①应用于旋转机械设备的智能运维故障预警系统;②为轴承等关键部件的早期故障识别提供高精度诊断方案;③推动智能优化算法深度学习在工业信号处理领域的融合研究。; 阅读建议:建议读者结合MATLAB代码实现,深入理解OCSSA优化机制、VMD参数选择策略以及CNN-BiLSTM网络结构的设计逻辑,通过复现实验掌握完整诊断流程,并可进一步尝试迁移至其他设备的故障诊断任务中进行验证优化。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值