题目大意:F城由n+1各横向路和m+1个竖向路组成。你的任务是从最南边的路走到最北边的路,使得走过的路上的高兴值和最大(高兴值可能为负值)。同一段路不能经过两次,且不能从北往南走。另外在每条横路上所花费的时间不能超过k。
解题思路:dp[i][j][0]表示走到(i,j)这个位置的最大开心值和,dp[i][j][1]表示从左边移动到(i,j)的最优值,dp[i][j][2]表示从右边移动到(i,j)的最优值。
dp[i][j][1] = min { dp[i-1][k][0] + gay[i][j][1] - gay[i][k][1] | dis[i][j][1] - dis[i][k][1] <= k }
dp[i][j][1] = min { dp[i-1][k][0] + gay[i][j][2] - gay[i][k][2] | dis[i][j][2] - dis[i][k][2] <= k }
不过如果直接对于每个j考虑所有的k的话,复杂度为o(n*m^2),所以要加上单调队列优化。
dp[i-1][k][0] + gay[i][j][s] - gay[i][k][s] = gay[i][j][s] - (gay[i][k][s] - dp[i-1][k][0]);
令func(i, k, s) = gay[i][k][s] - dp[i-1][k][0]; 那么只要为护func的单调即可。
#include <stdio.h>
#include <string.h>
#include <algorithm>
#include <queue>
using namespace std;
const int N = 105;
const int M = 1e4+10;
const int INF = 0x3f3f3f3f;
int n, m, k, h[M], d[M];
int gay[N][M][3], dis[N][M][3], dp[N][M][3];
void init () {
n++;
memset(gay, 0, sizeof(gay));
memset(dis, 0, sizeof(dis));
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= m; j++) {
scanf("%d", &h[j]);
gay[i][j][1] = gay[i][j-1][1] + h[j];
}
for (int j = m-1; j >= 0; j--)
gay[i][j][2] = gay[i][j+1][2] + h[j+1];
}
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= m; j++) {
scanf("%d", &d[j]);
dis[i][j][1] = dis[i][j-1][1] + d[j];
}
for (int j = m-1; j >= 0; j--)
dis[i][j][2] = dis[i][j+1][2] + d[j+1];
}
}
int func(int i, int j, int o) {
return gay[i][j][o] - dp[i-1][j][0];
}
int solve () {
int ans = -INF;
deque<int> que;
for (int i = 1; i <= n; i++) {
que.clear();
for (int j = 0; j <= m; j++) {
while (!que.empty() && dis[i][j][1] - dis[i][que.front()][1] > k) que.pop_front();
while (!que.empty() && func(i, que.back(), 1) >= func(i, j, 1)) que.pop_back();
que.push_back(j);
dp[i][j][1] = gay[i][j][1] - func(i, que.front(), 1);
}
que.clear();
for (int j = m; j >= 0; j--) {
while (!que.empty() && dis[i][j][2] - dis[i][que.front()][2] > k) que.pop_front();
while (!que.empty() && func(i, que.back(), 2) >= func(i, j, 2)) que.pop_back();
que.push_back(j);
dp[i][j][2] = gay[i][j][2] - func(i, que.front(), 2);
}
for (int j = 0; j <= m; j++)
dp[i][j][0] = max(dp[i][j][1], dp[i][j][2]);
}
for (int i = 0; i <= m; i++)
ans = max(ans, dp[n][i][0]);
return ans;
}
int main () {
while (scanf("%d%d%d", &n, &m, &k) == 3 && n + m + k) {
init();
printf("%d\n", solve());
}
return 0;
}