
sklearn
火星种萝卜
c++ vc mfc java
展开
-
scipy.stats.chi2
scipy.stats.chi2 — SciPy v1.8.1 Manual转载 2022-07-12 14:19:21 · 452 阅读 · 0 评论 -
cross_val_score,cross_val_predict,cross_validate理解
cross_val_score,cross_val_predict,cross_validate理解 - 知乎转载 2022-01-14 17:16:31 · 904 阅读 · 0 评论 -
sklearn中cross_val_score、cross_val_predict的用法比较
sklearn中cross_val_score、cross_val_predict的用法比较_程大海的博客-优快云博客_cross_val_predict转载 2022-01-14 17:02:55 · 593 阅读 · 0 评论 -
sklearn的train_test_split()各函数参数含义解释(非常全)
sklearn的train_test_split()各函数参数含义解释(非常全)sklearn的train_test_split()各函数参数含义解释(非常全) - The-Chosen-One - 博客园转载 2021-10-20 11:31:13 · 763 阅读 · 0 评论 -
Permutaion Importance —— 排列重要性
https://zhuanlan.zhihu.com/p/100451993转载 2021-08-20 11:34:46 · 526 阅读 · 0 评论 -
用正交变换化二次型为标准形的具体步骤
https://wenku.baidu.com/view/eb88c8e4bbd528ea81c758f5f61fb7360a4c2b72.html转载 2021-08-19 22:39:53 · 1695 阅读 · 0 评论 -
sklearn.inspection.permutation_importance 衡量特征重要性的方法比随机森林自带的rf.feature_importance 如何
https://scikit-learn.org/stable/modules/generated/sklearn.inspection.permutation_importance.html转载 2021-08-19 14:11:40 · 1319 阅读 · 0 评论 -
Some inputs do not have OOB scores. This probably means too few trees were used to compute any relia
Some inputs do not have OOB scores. This probably means too few trees were used to compute any reliable oob estimates. warn("Some inputs do not have OOB scores. "原创 2021-08-19 13:50:39 · 1273 阅读 · 0 评论 -
机器学习(四)——模型调参利器 gridSearchCV(网格搜索) scoring的
如果是None,则使用estimator的误差估计函数(3)scoring=None模型评价标准,默认None,这时需要使用score函数;或者如scoring='roc_auc',根据所选模型不同,评价准则不同。字符串(函数名),或是可调用对象,需要其函数签名形如:scorer(estimator, X, y);如果是None,则使用estimator的误差估计函数。具体值的选取看本篇第三节内容。https://blog.youkuaiyun.com/weixin_41988628/...转载 2021-08-19 12:20:29 · 1524 阅读 · 0 评论 -
ValueError: y_true and y_pred contain different number of classes 9, 2. Please provide the true labe
上面报错原因:logloss使用过程中,必须要求将输出用one-hot表示ValueError: y_true and y_pred contain different number of classes 9, 2. Please provide the true labehttps://blog.youkuaiyun.com/qq_41475067/article/details/114002102转载 2021-08-19 10:26:33 · 1611 阅读 · 0 评论 -
K折验证 The least populated class in y has only 1 members, which is less than n_splits=10
UserWarning: The least populated class in y has only 1 members, which is less than n_splits=10https://blog.youkuaiyun.com/weixin_46254549/article/details/106540547转载 2021-08-19 10:18:24 · 4696 阅读 · 0 评论 -
SVM、SVC、SVR三者的区别
https://zhuanlan.zhihu.com/p/37702043转载 2021-08-17 11:05:30 · 760 阅读 · 0 评论 -
随机森林里oob_score以及用oob判断特征重要性的理解
https://blog.youkuaiyun.com/MingRachel/article/details/115038730转载 2021-05-28 15:20:50 · 847 阅读 · 0 评论 -
RandomForestClassifier参数min_samples_leaf和min_samples_split理解
而min_samples_split限定,⼀个结点必须要包含⾄少min_samples_split个训练样本,这个结点才允许被分⽀,否则分⽀就不会发⽣。min_samples_leaf限定,⼀个结点在分⽀后的每个⼦结点都必须包含⾄少min_samples_leaf个训练样本,否则分⽀就不会发⽣,或者,分⽀会朝着满⾜每个⼦结点都包含min_samples_leaf个样本的⽅向去发⽣。⼀般搭配max_depth使⽤,在回归树中有神奇的效果,可以让模型变得更加平滑。这个参数的数量设置得太⼩会引起过拟合,转载 2021-05-28 14:51:35 · 8109 阅读 · 1 评论 -
sklearn中的RandomForestClassifier参数详解
https://blog.youkuaiyun.com/qq_16633405/article/details/58596368转载 2021-05-28 14:42:41 · 5672 阅读 · 0 评论 -
sklearn 统计多分类和单分类结果的混淆矩阵API 写法 confusion_matrix 左边为真实值 上边为预测值
分析代码源自from sklearn.metrics import confusion_matrix如何写混淆矩阵手动分析如下一 将y_true y_pred写成列向量的形式y_true y_pre 是否匹配(真实值与预测值是否匹配)0 1 n1 1 y0 1 n1 0 n二 统计二分类混淆矩阵列如下(1代表阳性 0 代表阴性) ..原创 2021-05-27 17:15:29 · 518 阅读 · 0 评论 -
混淆矩阵(Confusion Matrix)分析
https://blog.youkuaiyun.com/vesper305/article/details/44927047转载 2021-05-27 15:40:21 · 269 阅读 · 0 评论 -
sklearn(五)计算acc:使用metrics.accuracy_score()计算分类的准确率
https://blog.youkuaiyun.com/pearl8899/article/details/109877348转载 2021-05-27 12:32:02 · 2440 阅读 · 0 评论 -
sklearn网址 搜索sklearn.org 内有sklearn.metrics的详细介绍
https://sklearn.org/modules/classes.html转载 2020-08-24 09:01:38 · 266 阅读 · 0 评论 -
scipy.linalg.norm 线性代数运算 API
线性代数运算 APIhttps://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.norm.html转载 2020-08-20 10:56:51 · 315 阅读 · 0 评论 -
2020-08-20 CountVectorizer 包含示例 API
https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.CountVectorizer.html#sklearn.feature_extraction.text.CountVectorizer转载 2020-08-20 09:39:14 · 104 阅读 · 0 评论 -
sklearn——CountVectorizer详解
https://blog.youkuaiyun.com/liuerin/article/details/91492708转载 2020-08-19 22:04:09 · 465 阅读 · 0 评论 -
转牛人博客 稀疏矩阵定义CSR COO CSC 第一个讲的清晰易懂的人
https://blog.youkuaiyun.com/ChenglinBen/article/details/84426942转载 2020-08-19 10:54:45 · 319 阅读 · 0 评论 -
模型训练完成后有用参数如何获取
https://www.jianshu.com/p/fa061c9ae72f转载 2020-08-16 22:28:25 · 939 阅读 · 0 评论 -
MinMaxScaler.fit 归一化数据的方法
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MinMaxScaler.html#sklearn.preprocessing.MinMaxScaler.fit转载 2020-08-16 21:26:27 · 1869 阅读 · 0 评论 -
如下10种分类算法对比Classifier comparison
如下10种分类算法对比names = ["Nearest Neighbors", "Linear SVM", "RBF SVM", "Gaussian Process", "Decision Tree", "Random Forest", "Neural Net", "AdaBoost", "Naive Bayes", "QDA"]https://scikit-learn.org/stable/auto_examples/classification/pl.转载 2020-08-04 15:29:24 · 587 阅读 · 0 评论 -
有监督学习的算法fit(x,y)传两个参数无监督学习的算法是fit(x),即传一个参数
有监督学习的算法fit(x,y)传两个参数无监督学习的算法是fit(x),即传一个参数https://www.jianshu.com/p/55e261ce9b3e转载 2020-08-02 11:02:47 · 1446 阅读 · 0 评论 -
scikit CountVectorizer源码
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/feature_extraction/text.py#L664转载 2020-07-28 16:07:21 · 193 阅读 · 0 评论 -
CountVectorizer 统计文本重复率 sklearn API
https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.CountVectorizer.html转载 2020-07-28 14:39:14 · 245 阅读 · 0 评论 -
PCA中transform等scikit-learn中系列API用法
https://blog.youkuaiyun.com/anneqiqi/article/details/64443711转载 2020-07-08 18:00:11 · 353 阅读 · 0 评论 -
scikit对超参数模型优化对比(网格搜索与随机搜索对比)
https://scikit-learn.org/stable/auto_examples/model_selection/plot_randomized_search.html#sphx-glr-auto-examples-model-selection-plot-randomized-search-py转载 2020-04-29 17:41:19 · 1483 阅读 · 0 评论 -
sklearn决策树模型机器学习参数解释很详细中文
https://blog.youkuaiyun.com/qq_16000815/article/details/80954039转载 2020-04-26 18:45:15 · 250 阅读 · 0 评论 -
可以用于回归分类的总结
When can you use the model - use each option as many times as necessarya = ‘regression’b = ‘classification’c = ‘both regression and classification’models = {‘decision trees’: c,# Letter here,‘ra...转载 2020-04-24 16:36:09 · 143 阅读 · 0 评论 -
sklearn fit fit_transform transform用法
https://www.jianshu.com/p/55e261ce9b3e转载 2020-04-21 17:43:24 · 327 阅读 · 0 评论 -
为什么训练集用fit_transform()而测试集用transform()及sklearn.feature_extraction.text.CountVectorizer API详解
https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.CountVectorizer.html#sklearn.feature_extraction.text.CountVectorizer转载 2020-04-20 17:39:33 · 1601 阅读 · 1 评论