K折验证 The least populated class in y has only 1 members, which is less than n_splits=10

UserWarning: The least populated class in y has only 1 members, which is less than n_splits=10

D:\nlp\ENVS\env39\lib\site-packages\sklearn\model_selection\_split.py:666: UserWarning: The least populated class in y has only 1 members, which is less than n_splits=10.
  warnings.warn(("The least populated class in y has only %d"
D:\nlp\ENVS\env39\lib\site-packages\sklearn\model_selection\_validation.py:696: UserWarning: Scoring failed. The score on this train-test partition for these parameters will be set to nan. Details: 
Traceback (most recent call last):
  File "D:\nlp\ENVS\env39\lib\site-packages\sklearn\model_selection\_validation.py", line 687, in _score
    scores = scorer(estimator, X_test, y_test)
  File "D:\nlp\ENVS\env39\lib\site-packages\sklearn\metrics\_scorer.py", line 199, in __call__
    return self._score(partial(_cached_call, None), estimator, X, y_true,
  File "D:\nlp\ENVS\env39\lib\site-packages\sklearn\metrics\_scorer.py", line 288, in _score
    return self._sign * self._score_func(y, y_pred, **self._kwargs)
  File "D:\nlp\ENVS\env39\lib\site-packages\sklearn\utils\validation.py", line 63, in inner_f
    return f(*args, **kwargs)
  File "D:\nlp\ENVS\env39\lib\site-packages\sklearn\metrics\_classification.py", line 2269, in log_loss
    raise ValueError("y_true and y_pred contain different number of "
ValueError: y_true and y_pred contain different number of classes 9, 15. Please provide the true labels explicitly through the labels argument. Classes found in y_true: [ 0  2  4  5  6  9 11 12 14]

  warnings.warn(
D:\nlp\ENVS\env39\lib\site-packages\sklearn\model_selection\_validation.py:696: UserWarning: Scoring failed. The score on this train-test partition for these parameters will be set to nan. Details: 
Traceback (most recent call last):
  File "D:\nlp\ENVS\env39\lib\site-packages\sklearn\model_selection\_validation.py", line 687, in _score
    scores = scorer(estimator, X_test, y_test)
  File "D:\nlp\ENVS\env39\lib\site-packages\sklearn\metrics\_scorer.py", line 199, in __call__
    return self._score(partial(_cached_call, None), estimator, X, y_true,
  File "D:\nlp\ENVS\env39\lib\site-packages\sklearn\metrics\_scorer.py", line 288, in _score
    return self._sign * self._score_func(y, y_pred, **self._kwargs)
  File "D:\nlp\ENVS\env39\lib\site-packages\sklearn\utils\validation.py", line 63, in inner_f
    return f(*args, **kwargs)
  File "D:\nlp\ENVS\env39\lib\site-packages\sklearn\metrics\_classification.py", line 2269, in log_loss
    raise ValueError("y_true and y_pred contain different number of "
ValueError: y_true and y_pred contain different number of classes 9, 15. Please provide the true labels explicitly through the labels argument. Classes found in y_true: [ 0  2  4  5  6  9 11 12 15]

  warnings.warn(
D:\nlp\ENVS\env39\lib\site-packages\sklearn\model_selection\_validation.py:696: UserWarning: Scoring failed. The score on this train-test partition for these parameters will be set to nan. Details: 
Traceback (most recent call last):
  File "D:\nlp\ENVS\env39\lib\site-packages\sklearn\model_selection\_validation.py", line 687, in _score
    scores = scorer(estimator, X_test, y_test)
  File "D:\nlp\ENVS\env39\lib\site-packages\sklearn\metrics\_scorer.py", line 199, in __call__
    return self._score(partial(_cached_call, None), estimator, X, y_true,
  File "D:\nlp\ENVS\env39\lib\site-packages\sklearn\metrics\_scorer.py", line 288, in _score
    return self._sign * self._score_func(y, y_pred, **self._kwargs)
  File "D:\nlp\ENVS\env39\lib\site-packages\sklearn\utils\validation.py", line 63, in inner_f
    return f(*args, **kwargs)
  File "D:\nlp\ENVS\env39\lib\site-packages\sklearn\metrics\_classification.py", line 2269, in log_loss
    raise ValueError("y_true and y_pred contain different number of "
ValueError: y_true and y_pred contain different number of classes 9, 15. Please provide the true labels explicitly through the labels argument. Classes found in y_true: [ 0  1  2  4  5  6  9 11 12]

  warnings.warn(
D:\nlp\ENVS\env39\lib\site-packages\sklearn\model_selection\_validation.py:696: UserWarning: Scoring failed. The score on this train-test partition for these parameters will be set to nan. Details: 
Traceback (most recent call last):
  File "D:\nlp\ENVS\env39\lib\site-packages\sklearn\model_selection\_validation.py", line 687, in _score
    scores = scorer(estimator, X_test, y_test)
  File "D:\nlp\ENVS\env39\lib\site-packages\sklearn\metrics\_scorer.py", line 199, in __call__
    return self._score(partial(_cached_call, None), estimator, X, y_true,
  File "D:\nlp\ENVS\env39\lib\site-packages\sklearn\metrics\_scorer.py", line 288, in _score
    return self._sign * self._score_func(y, y_pred, **self._kwargs)
  File "D:\nlp\ENVS\env39\lib\site-packages\sklearn\utils\validation.py", line 63, in inner_f
    return f(*args, **kwargs)
  File "D:\nlp\ENVS\env39\lib\site-packages\sklearn\metrics\_classification.py", line 2269, in log_loss
    raise ValueError("y_true and y_pred contain different number of "
ValueError: y_true and y_pred contain different number of classes 8, 16. Please provide the true labels explicitly through the labels argument. Classes found in y_true: [ 0  2  4  5  6  9 11 12]

  warnings.warn(
D:\nlp\ENVS\env39\lib\site-packages\sklearn\model_selection\_validation.py:696: UserWarning: Scoring failed. The score on this train-test partition for these parameters will be set to nan. Details: 
Traceback (most recent call last):
  File "D:\nlp\ENVS\env39\lib\site-packages\sklearn\model_selection\_validation.py", line 687, in _score
    scores = scorer(estimator, X_test, y_test)
  File "D:\nlp\ENVS\env39\lib\site-packages\sklearn\metrics\_scorer.py", line 199, in __call__
    return self._score(partial(_cached_call, None), estimator, X, y_true,
  File "D:\nlp\ENVS\env39\lib\site-packages\sklearn\metrics\_scorer.py", line 288, in _score
    return self._sign * self._score_func(y, y_pred, **self._kwargs)
  File "D:\nlp\ENVS\env39\lib\site-packages\sklearn\utils\validation.py", line 63, in inner_f
    return f(*args, **kwargs)
  File "D:\nlp\ENVS\env39\lib\site-packages\sklearn\metrics\_classification.py", line 2269, in log_loss
    raise ValueError("y_true and y_pred contain different number of "
ValueError: y_true and y_pred contain different number of classes 8, 16. Please provide the true labels explicitly through the labels argument. Classes found in y_true: [ 0  2  4  5  6  9 11 12]

  warnings.warn(
D:\nlp\ENVS\env39\lib\site-packages\sklearn\model_selection\_validation.py:696: UserWarning: Scoring failed. The score on this train-test partition for these parameters will be set to nan. Details: 
Traceback (most recent call last):
  File "D:\nlp\ENVS\env39\lib\site-packages\sklearn\model_selection\_validation.py", line 687, in _score
    scores = scorer(estimator, X_test, y_test)
  File "D:\nlp\ENVS\env39\lib\site-packages\sklearn\metrics\_scorer.py", line 199, in __call__
    return self._score(partial(_cached_call, None), estimator, X, y_true,
  File "D:\nlp\ENVS\env39\lib\site-packages\sklearn\metrics\_scorer.py", line 288, in _score
    return self._sign * self._score_func(y, y_pred, **self._kwargs)
  File "D:\nlp\ENVS\env39\lib\site-packages\sklearn\utils\validation.py", line 63, in inner_f
    return f(*args, **kwargs)
  File "D:\nlp\ENVS\env39\lib\site-packages\sklearn\metrics\_classification.py", line 2269, in log_loss
    raise ValueError("y_true and y_pred contain different number of "
ValueError: y_true and y_pred contain different number of classes 9, 15. Please provide the true labels explicitly through the labels argument. Classes found in y_true: [ 0  2  4  5  6  9 10 11 12]

  warnings.warn(
D:\nlp\ENVS\env39\lib\site-packages\sklearn\model_selection\_validation.py:696: UserWarning: Scoring failed. The score on this train-test partition for these parameters will be set to nan. Details: 
Traceback (most recent call last):
  File "D:\nlp\ENVS\env39\lib\site-packages\sklearn\model_selection\_validation.py", line 687, in _score
    scores = scorer(estimator, X_test, y_test)
  File "D:\nlp\ENVS\env39\lib\site-packages\sklearn\metrics\_scorer.py", line 199, in __call__
    return self._score(partial(_cached_call, None), estimator, X, y_true,
  File "D:\nlp\ENVS\env39\lib\site-packages\sklearn\metrics\_scorer.py", line 288, in _score
    return self._sign * self._score_func(y, y_pred, **self._kwargs)
  File "D:\nlp\ENVS\env39\lib\site-packages\sklearn\utils\validation.py", line 63, in inner_f
    return f(*args, **kwargs)
  File "D:\nlp\ENVS\env39\lib\site-packages\sklearn\metrics\_classification.py", line 2269, in log_loss
    raise ValueError("y_true and y_pred contain different number of "
ValueError: y_true and y_pred contain different number of classes 9, 15. Please provide the true labels explicitly through the labels argument. Classes found in y_true: [ 0  2  3  4  5  6  9 11 12]

  warnings.warn(
D:\nlp\ENVS\env39\lib\site-packages\sklearn\model_selection\_validation.py:696: UserWarning: Scoring failed. The score on this train-test partition for these parameters will be set to nan. Details: 
Traceback (most recent call last):
  File "D:\nlp\ENVS\env39\lib\site-packages\sklearn\model_selection\_validation.py", line 687, in _score
    scores = scorer(estimator, X_test, y_test)
  File "D:\nlp\ENVS\env39\lib\site-packages\sklearn\metrics\_scorer.py", line 199, in __call__
    return self._score(partial(_cached_call, None), estimator, X, y_true,
  File "D:\nlp\ENVS\env39\lib\site-packages\sklearn\metrics\_scorer.py", line 288, in _score
    return self._sign * self._score_func(y, y_pred, **self._kwargs)
  File "D:\nlp\ENVS\env39\lib\site-packages\sklearn\utils\validation.py", line 63, in inner_f
    return f(*args, **kwargs)
  File "D:\nlp\ENVS\env39\lib\site-packages\sklearn\metrics\_classification.py", line 2269, in log_loss
    raise ValueError("y_true and y_pred contain different number of "
ValueError: y_true and y_pred contain different number of classes 8, 16. Please provide the true labels explicitly through the labels argument. Classes found in y_true: [ 0  2  4  5  6  9 11 12]

  warnings.warn(
D:\nlp\ENVS\env39\lib\site-packages\sklearn\model_selection\_validation.py:696: UserWarning: Scoring failed. The score on this train-test partition for these parameters will be set to nan. Details: 
Traceback (most recent call last):
  File "D:\nlp\ENVS\env39\lib\site-packages\sklearn\model_selection\_validation.py", line 687, in _score
    scores = scorer(estimator, X_test, y_test)
  File "D:\nlp\ENVS\env39\lib\site-packages\sklearn\metrics\_scorer.py", line 199, in __call__
    return self._score(partial(_cached_call, None), estimator, X, y_true,
  File "D:\nlp\ENVS\env39\lib\site-packages\sklearn\metrics\_scorer.py", line 288, in _score
    return self._sign * self._score_func(y, y_pred, **self._kwargs)
  File "D:\nlp\ENVS\env39\lib\site-packages\sklearn\utils\validation.py", line 63, in inner_f
    return f(*args, **kwargs)
  File "D:\nlp\ENVS\env39\lib\site-packages\sklearn\metrics\_classification.py", line 2269, in log_loss
    raise ValueError("y_true and y_pred contain different number of "
ValueError: y_true and y_pred contain different number of classes 10, 14. Please provide the true labels explicitly through the labels argument. Classes found in y_true: [ 0  2  4  5  6  8  9 11 12 13]

  warnings.warn(
D:\nlp\ENVS\env39\lib\site-packages\sklearn\model_selection\_validation.py:696: UserWarning: Scoring failed. The score on this train-test partition for these parameters will be set to nan. Details: 
Traceback (most recent call last):
  File "D:\nlp\ENVS\env39\lib\site-packages\sklearn\model_selection\_validation.py", line 687, in _score
    scores = scorer(estimator, X_test, y_test)
  File "D:\nlp\ENVS\env39\lib\site-packages\sklearn\metrics\_scorer.py", line 199, in __call__
    return self._score(partial(_cached_call, None), estimator, X, y_true,
  File "D:\nlp\ENVS\env39\lib\site-packages\sklearn\metrics\_scorer.py", line 288, in _score
    return self._sign * self._score_func(y, y_pred, **self._kwargs)
  File "D:\nlp\ENVS\env39\lib\site-packages\sklearn\utils\validation.py", line 63, in inner_f
    return f(*args, **kwargs)
  File "D:\nlp\ENVS\env39\lib\site-packages\sklearn\metrics\_classification.py", line 2269, in log_loss
    raise ValueError("y_true and y_pred contain different number of "
ValueError: y_true and y_pred contain different number of classes 9, 15. Please provide the true labels explicitly through the labels argument. Classes found in y_true: [ 0  2  4  5  6  7  9 11 12]

  warnings.warn(
D:\nlp\ENVS\env39\lib\site-packages\sklearn\model_selection\_validation.py:696: UserWarning: Scoring failed. The score on this train-test partition for these parameters will be set to nan. Details: 
Traceback (most recent call last):
  File "D:\nlp\ENVS\env39\lib\site-packages\sklearn\model_selection\_validation.py", line 687, in _score
    scores = scorer(estimator, X_test, y_test)
  File "D:\nlp\ENVS\env39\lib\site-packages\sklearn\metrics\_scorer.py", line 199, in __call__
    return self._score(partial(_cached_call, None), estimator, X, y_true,
  File "D:\nlp\ENVS\env39\lib\site-packages\sklearn\metrics\_scorer.py", line 288, in _score
    return self._sign * self._score_func(y, y_pred, **self._kwargs)
  File "D:\nlp\ENVS\env39\lib\site-packages\sklearn\utils\validation.py", line 63, in inner_f
    return f(*args, **kwargs)
  File "D:\nlp\ENVS\env39\lib\site-packages\sklearn\metrics\_classification.py", line 2269, in log_loss
    raise ValueError("y_true and y_pred contain different number of "
ValueError: y_true and y_pred contain different number of classes 9, 15. Please provide the true labels explicitly through the labels argument. Classes found in y_true: [ 0  2  4  5  6  9 11 12 14]

  warnings.warn(
D:\nlp\ENVS\env39\lib\site-packages\sklearn\model_selection\_validation.py:696: UserWarning: Scoring failed. The score on this train-test partition for these parameters will be set to nan. Details: 
Traceback (most recent call last):
  File "D:\nlp\ENVS\env39\lib\site-packages\sklearn\model_selection\_validation.py", line 687, in _score
    scores = scorer(estimator, X_test, y_test)
  File "D:\nlp\ENVS\env39\lib\site-packages\sklearn\metrics\_scorer.py", line 199, in __call__
    return self._score(partial(_cached_call, None), estimator, X, y_true,
  File "D:\nlp\ENVS\env39\lib\site-packages\sklearn\metrics\_scorer.py", line 288, in _score
    return self._sign * self._score_func(y, y_pred, **self._kwargs)
  File "D:\nlp\ENVS\env39\lib\site-packages\sklearn\utils\validation.py", line 63, in inner_f
    return f(*args, **kwargs)
  File "D:\nlp\ENVS\env39\lib\site-packages\sklearn\metrics\_classification.py", line 2269, in log_loss
    raise ValueError("y_true and y_pred contain different number of "
ValueError: y_true and y_pred contain different number of classes 9, 15. Please provide the true labels explicitly through the labels argument. Classes found in y_true: [ 0  2  4  5  6  9 11 12 15]

  warnings.warn(
D:\nlp\ENVS\env39\lib\site-packages\sklearn\model_selection\_validation.py:696: UserWarning: Scoring failed. The score on this train-test partition for these parameters will be set to nan. Details: 
Traceback (most recent call last):
  File "D:\nlp\ENVS\env39\lib\site-packages\sklearn\model_selection\_validation.py", line 687, in _score
    scores = scorer(estimator, X_test, y_test)
  File "D:\nlp\ENVS\env39\lib\site-packages\sklearn\metrics\_scorer.py", line 199, in __call__
    return self._score(partial(_cached_call, None), estimator, X, y_true,
  File "D:\nlp\ENVS\env39\lib\site-packages\sklearn\metrics\_scorer.py", line 288, in _score
    return self._sign * self._score_func(y, y_pred, **self._kwargs)
  File "D:\nlp\ENVS\env39\lib\site-packages\sklearn\utils\validation.py", line 63, in inner_f
    return f(*args, **kwargs)
  File "D:\nlp\ENVS\env39\lib\site-packages\sklearn\metrics\_classification.py", line 2269, in log_loss
    raise ValueError("y_true and y_pred contain different number of "
ValueError: y_true and y_pred contain different number of classes 9, 15. Please provide the true labels explicitly through the labels argument. Classes found in y_true: [ 0  1  2  4  5  6  9 11 12]

  warnings.warn(
D:\nlp\ENVS\env39\lib\site-packages\sklearn\model_selection\_validation.py:696: UserWarning: Scoring failed. The score on this train-test partition for these parameters will be set to nan. Details: 
Traceback (most recent call last):
  File "D:\nlp\ENVS\env39\lib\site-packages\sklearn\model_selection\_validation.py", line 687, in _score
    scores = scorer(estimator, X_test, y_test)
  File "D:\nlp\ENVS\env39\lib\site-packages\sklearn\metrics\_scorer.py", line 199, in __call__
    return self._score(partial(_cached_call, None), estimator, X, y_true,
  File "D:\nlp\ENVS\env39\lib\site-packages\sklearn\metrics\_scorer.py", line 288, in _score
    return self._sign * self._score_func(y, y_pred, **self._kwargs)
  File "D:\nlp\ENVS\env39\lib\site-packages\sklearn\utils\validation.py", line 63, in inner_f
    return f(*args, **kwargs)
  File "D:\nlp\ENVS\env39\lib\site-packages\sklearn\metrics\_classification.py", line 2269, in log_loss
    raise ValueError("y_true and y_pred contain different number of "
ValueError: y_true and y_pred contain different number of classes 9, 15. Please provide the true labels explicitly through the labels argument. Classes found in y_true: [ 0  2  3  4  5  6  9 11 12]

  warnings.warn(
D:\nlp\ENVS\env39\lib\site-packages\sklearn\model_selection\_validation.py:696: UserWarning: Scoring failed. The score on this train-test partition for these parameters will be set to nan. Details: 
Traceback (most recent call last):
  File "D:\nlp\ENVS\env39\lib\site-packages\sklearn\model_selection\_validation.py", line 687, in _score
    scores = scorer(estimator, X_test, y_test)
  File "D:\nlp\ENVS\env39\lib\site-packages\sklearn\metrics\_scorer.py", line 199, in __call__
    return self._score(partial(_cached_call, None), estimator, X, y_true,
  File "D:\nlp\ENVS\env39\lib\site-packages\sklearn\metrics\_scorer.py", line 288, in _score
    return self._sign * self._score_func(y, y_pred, **self._kwargs)
  File "D:\nlp\ENVS\env39\lib\site-packages\sklearn\utils\validation.py", line 63, in inner_f
    return f(*args, **kwargs)
  File "D:\nlp\ENVS\env39\lib\site-packages\sklearn\metrics\_classification.py", line 2269, in log_loss
    raise ValueError("y_true and y_pred contain different number of "
ValueError: y_true and y_pred contain different number of classes 9, 15. Please provide the true labels explicitly through the labels argument. Classes found in y_true: [ 0  2  4  5  6  9 10 11 12]

  warnings.warn(
D:\nlp\ENVS\env39\lib\site-packages\sklearn\model_selection\_validation.py:696: UserWarning: Scoring failed. The score on this train-test partition for these parameters will be set to nan. Details: 
Traceback (most recent call last):
  File "D:\nlp\ENVS\env39\lib\site-packages\sklearn\model_selection\_validation.py", line 687, in _score
    scores = scorer(estimator, X_test, y_test)
  File "D:\nlp\ENVS\env39\lib\site-packages\sklearn\metrics\_scorer.py", line 199, in __call__
    return self._score(partial(_cached_call, None), estimator, X, y_true,
  File "D:\nlp\ENVS\env39\lib\site-packages\sklearn\metrics\_scorer.py", line 288, in _score
    return self._sign * self._score_func(y, y_pred, **self._kwargs)
  File "D:\nlp\ENVS\env39\lib\site-packages\sklearn\utils\validation.py", line 63, in inner_f
    return f(*args, **kwargs)
  File "D:\nlp\ENVS\env39\lib\site-packages\sklearn\metrics\_classification.py", line 2269, in log_loss
    raise ValueError("y_true and y_pred contain different number of "
ValueError: y_true and y_pred contain different number of classes 8, 16. Please provide the true labels explicitly through the labels argument. Classes found in y_true: [ 0  2  4  5  6  9 11 12]

  warnings.warn(
D:\nlp\ENVS\env39\lib\site-packages\sklearn\model_selection\_validation.py:696: UserWarning: Scoring failed. The score on this train-test partition for these parameters will be set to nan. Details: 
Traceback (most recent call last):
  File "D:\nlp\ENVS\env39\lib\site-packages\sklearn\model_selection\_validation.py", line 687, in _score
    scores = scorer(estimator, X_test, y_test)
  File "D:\nlp\ENVS\env39\lib\site-packages\sklearn\metrics\_scorer.py", line 199, in __call__
    return self._score(partial(_cached_call, None), estimator, X, y_true,
  File "D:\nlp\ENVS\env39\lib\site-packages\sklearn\metrics\_scorer.py", line 288, in _score
    return self._sign * self._score_func(y, y_pred, **self._kwargs)
  File "D:\nlp\ENVS\env39\lib\site-packages\sklearn\utils\validation.py", line 63, in inner_f
    return f(*args, **kwargs)
  File "D:\nlp\ENVS\env39\lib\site-packages\sklearn\metrics\_classification.py", line 2269, in log_loss
    raise ValueError("y_true and y_pred contain different number of "
ValueError: y_true and y_pred contain different number of classes 9, 15. Please provide the true labels explicitly through the labels argument. Classes found in y_true: [ 0  2  4  5  6  9 11 12 14]

  warnings.warn(
D:\nlp\ENVS\env39\lib\site-packages\sklearn\model_selection\_validation.py:696: UserWarning: Scoring failed. The score on this train-test partition for these parameters will be set to nan. Details: 
Traceback (most recent call last):
  File "D:\nlp\ENVS\env39\lib\site-packages\sklearn\model_selection\_validation.py", line 687, in _score
    scores = scorer(estimator, X_test, y_test)
  File "D:\nlp\ENVS\env39\lib\site-packages\sklearn\metrics\_scorer.py", line 199, in __call__
    return self._score(partial(_cached_call, None), estimator, X, y_true,
  File "D:\nlp\ENVS\env39\lib\site-packages\sklearn\metrics\_scorer.py", line 288, in _score
    return self._sign * self._score_func(y, y_pred, **self._kwargs)
  File "D:\nlp\ENVS\env39\lib\site-packages\sklearn\utils\validation.py", line 63, in inner_f
    return f(*args, **kwargs)
  File "D:\nlp\ENVS\env39\lib\site-packages\sklearn\metrics\_classification.py", line 2269, in log_loss
    raise ValueError("y_true and y_pred contain different number of "
ValueError: y_true and y_pred contain different number of classes 9, 15. Please provide the true labels explicitly through the labels argument. Classes found in y_true: [ 0  2  4  5  6  9 11 12 15]

  warnings.warn(
D:\nlp\ENVS\env39\lib\site-packages\sklearn\model_selection\_validation.py:696: UserWarning: Scoring failed. The score on this train-test partition for these parameters will be set to nan. Details: 
Traceback (most recent call last):
  File "D:\nlp\ENVS\env39\lib\site-packages\sklearn\model_selection\_validation.py", line 687, in _score
    scores = scorer(estimator, X_test, y_test)
  File "D:\nlp\ENVS\env39\lib\site-packages\sklearn\metrics\_scorer.py", line 199, in __call__
    return self._score(partial(_cached_call, None), estimator, X, y_true,
  File "D:\nlp\ENVS\env39\lib\site-packages\sklearn\metrics\_scorer.py", line 288, in _score
    return self._sign * self._score_func(y, y_pred, **self._kwargs)
  File "D:\nlp\ENVS\env39\lib\site-packages\sklearn\utils\validation.py", line 63, in inner_f
    return f(*args, **kwargs)
  File "D:\nlp\ENVS\env39\lib\site-packages\sklearn\metrics\_classification.py", line 2269, in log_loss
    raise ValueError("y_true and y_pred contain different number of "
ValueError: y_true and y_pred contain different number of classes 8, 16. Please provide the true labels explicitly through the labels argument. Classes found in y_true: [ 0  2  4  5  6  9 11 12]

  warnings.warn(
D:\nlp\ENVS\env39\lib\site-packages\sklearn\model_selection\_validation.py:696: UserWarning: Scoring failed. The score on this train-test partition for these parameters will be set to nan. Details: 
Traceback (most recent call last):
  File "D:\nlp\ENVS\env39\lib\site-packages\sklearn\model_selection\_validation.py", line 687, in _score
    scores = scorer(estimator, X_test, y_test)
  File "D:\nlp\ENVS\env39\lib\site-packages\sklearn\metrics\_scorer.py", line 199, in __call__
    return self._score(partial(_cached_call, None), estimator, X, y_true,
  File "D:\nlp\ENVS\env39\lib\site-packages\sklearn\metrics\_scorer.py", line 288, in _score
    return self._sign * self._score_func(y, y_pred, **self._kwargs)
  File "D:\nlp\ENVS\env39\lib\site-packages\sklearn\utils\validation.py", line 63, in inner_f
    return f(*args, **kwargs)
  File "D:\nlp\ENVS\env39\lib\site-packages\sklearn\metrics\_classification.py", line 2269, in log_loss
    raise ValueError("y_true and y_pred contain different number of "
ValueError: y_true and y_pred contain different number of classes 9, 15. Please provide the true labels explicitly through the labels argument. Classes found in y_true: [ 0  1  2  4  5  6  9 11 12]

  warnings.warn(

Process finished with exit code -1
 

https://blog.youkuaiyun.com/weixin_46254549/article/details/106540547

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值