Some inputs do not have OOB scores. This probably means too few trees were used to compute any reliable oob estimates. warn("Some inputs do not have OOB scores. "
Some inputs do not have OOB scores. This probably means too few trees were used to compute any relia
最新推荐文章于 2025-06-04 08:28:43 发布
博客指出,一些输入数据缺乏可靠的OOB(Out-of-Bag)分数,这可能是因为使用的树数量不足,导致无法得到稳定的OOB估计。OOB估计对于随机森林模型的验证至关重要,因为它提供了一种无须额外训练数据就能评估模型性能的方法。因此,增加树的数量或调整其他参数以获得更准确的OOB分数是提高模型预测能力的关键步骤。

12万+

被折叠的 条评论
为什么被折叠?



