C知道Traceback (most recent call last):
File "E:\first1_project\学习&面试题深夜努力学python\朋友圈文章程序\随机森林4 随机森林与xgboost核心差异.py", line 211, in <module>
perm_xgb = permutation_importance(xgb_clf, X_test, y_test, scoring="roc_auc", n_repeats=8, n_jobs=-1, random_state=42)
File "D:\anaconda\envs\TF2.9\lib\site-packages\sklearn\utils\_param_validation.py", line 218, in wrapper
return func(*args, **kwargs)
File "D:\anaconda\envs\TF2.9\lib\site-packages\sklearn\inspection\_permutation_importance.py", line 286, in permutation_importance
baseline_score = _weights_scorer(scorer, estimator, X, y, sample_weight)
File "D:\anaconda\envs\TF2.9\lib\site-packages\sklearn\inspection\_permutation_importance.py", line 28, in _weights_scorer
return scorer(estimator, X, y)
File "D:\anaconda\envs\TF2.9\lib\site-packages\sklearn\metrics\_scorer.py", line 308, in __call__
return self._score(partial(_cached_call, None), estimator, X, y_true, **_kwargs)
File "D:\anaconda\envs\TF2.9\lib\site-packages\sklearn\metrics\_scorer.py", line 400, in _score
y_pred = method_caller(
File "D:\anaconda\envs\TF2.9\lib\site-packages\sklearn\metrics\_scorer.py", line 90, in _cached_call
result, _ = _get_response_values(
File "D:\anaconda\envs\TF2.9\lib\site-packages\sklearn\utils\_response.py", line 235, in _get_response_values
raise ValueError(
ValueError: XGBClassifier should either be a classifier to be used with response_method=predict_proba or the response_method should be 'predict'. Got a regressor with response_method=predict_proba instead.
最新发布