sklearn.inspection.permutation_importance 衡量特征重要性的方法比随机森林自带的rf.feature_importance 如何

本文介绍了如何使用scikit-learn库中的permutation_importance函数来评估模型中特征的重要性,通过实例解析了如何进行特征排序和可视化,帮助提升模型理解和优化。
C知道Traceback (most recent call last): File "E:\first1_project\学习&面试题深夜努力学python\朋友圈文章程序\随机森林4 随机森林与xgboost核心差异.py", line 211, in <module> perm_xgb = permutation_importance(xgb_clf, X_test, y_test, scoring="roc_auc", n_repeats=8, n_jobs=-1, random_state=42) File "D:\anaconda\envs\TF2.9\lib\site-packages\sklearn\utils\_param_validation.py", line 218, in wrapper return func(*args, **kwargs) File "D:\anaconda\envs\TF2.9\lib\site-packages\sklearn\inspection\_permutation_importance.py", line 286, in permutation_importance baseline_score = _weights_scorer(scorer, estimator, X, y, sample_weight) File "D:\anaconda\envs\TF2.9\lib\site-packages\sklearn\inspection\_permutation_importance.py", line 28, in _weights_scorer return scorer(estimator, X, y) File "D:\anaconda\envs\TF2.9\lib\site-packages\sklearn\metrics\_scorer.py", line 308, in __call__ return self._score(partial(_cached_call, None), estimator, X, y_true, **_kwargs) File "D:\anaconda\envs\TF2.9\lib\site-packages\sklearn\metrics\_scorer.py", line 400, in _score y_pred = method_caller( File "D:\anaconda\envs\TF2.9\lib\site-packages\sklearn\metrics\_scorer.py", line 90, in _cached_call result, _ = _get_response_values( File "D:\anaconda\envs\TF2.9\lib\site-packages\sklearn\utils\_response.py", line 235, in _get_response_values raise ValueError( ValueError: XGBClassifier should either be a classifier to be used with response_method=predict_proba or the response_method should be 'predict'. Got a regressor with response_method=predict_proba instead.
最新发布
11-16
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值